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Security folklore holds that a security mechanism based on stack inspection is incompatible with
a global tail call optimization policy; that an implementation of such a language must allocate
memory for a source-code tail call, and a program that uses only tail calls (and no other memory-
allocating construct) may nevertheless exhaust the available memory. In this article, we prove this
widely held belief wrong. We exhibit an abstract machine for a language with security stack inspec-
tion whose space consumption function is equivalent to that of the canonical tail call optimizing
abstract machine. Our machine is surprisingly simple and suggests that tail calls are as easy to
implement in a security setting as they are in a conventional one.
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1. STACKS, SECURITY, AND TAIL CALLS

Over the last 10 years, programming language implementors have spent sig-
nificant effort on security issues. This effort takes many forms; one is the im-
plementation of a strategy known as stack inspection [Wallach et al. 1997]. It
starts from the premise that trusted components may authorize potentially
insecure actions for the dynamic extent of some expression, provided that all
intermediate calls are made by and to trusted code.

In its conventional implementation, stack inspection is incompatible with
a traditional language semantics, because it clashes with the well-established
idea of modeling function calls with a β or βv reduction [Plotkin 1975]. A β re-
duction replaces a function’s application with the body of that function, with the
function’s parameters replaced by the application’s arguments. In a language
with stack inspection, a β or βv reduction thus disposes of information that is
necessary to evaluate the security primitives.
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For this reason, Fournet and Gordon [2002] modeled function calls with a
nonstandard β reduction. To be more precise, β does not hold as an equa-
tion for source terms. Instead, abstraction bodies are wrapped with context-
building primitives. Unfortunately, this formalization inhibits a transforma-
tion of this semantics into a tail-call-optimizing (TCO) implementation. Fournet
and Gordon recognized this fact and stated that “[S]tack inspection profoundly
affects the semantics of all programs. In particular, it invalidates . . . tail call
optimizations” [Fournet and Gordon 2002, p. 307].

This understanding of the stack inspection protocol also pervades the im-
plementation of existing runtime systems. The Java design team, for example,
chose not to provide a TCO implementation in part because of the perceived in-
compatibility between tail call optimizations and stack inspection.1 The .NET
effort at Microsoft provides a runtime system that is properly TCO—except in
the presence of security primitives, which disable it. Microsoft’s documentation
[Microsoft 2002] states that “[t]he current frame cannot be discarded when
control is transferred from untrusted code to trusted code, since this would
jeopardize code identity security.”

Wallach et al. [2000] suggested an alternative implementation of stack in-
spection that might accommodate TCO. They added an argument to each func-
tion call that represents the security context as a statement in their belief logic.
Statements in this belief logic can be unraveled to determine whether an oper-
ation is permitted. However, the details of their memory behavior are opaque.
In particular, they did not attempt to present a model in which memory usage
can be analyzed.

Our work fills the gap between Fournet and Gordon’s [2002] formal model and
Wallach’s alternative implementation of stack inspection. Specifically, our se-
curity model exploits a novel mechanism for lightweight stack inspection [Flatt
1995–2002]. We demonstrate the equivalence between our model and Fournet
and Gordon’s, and prove our claims of TCO. More precisely, our abstract imple-
mentation can transform all tail calls in the source program into instructions
that do not consume any stack (or store) space. Moreover, our abstract imple-
mentation represents a relatively minor change to the models used by current
implementations, suggesting that these implementations might accommodate
TCO with minimal effort.

We proceed as follows. First, we derive a CESK machine from Fournet and
Gordon’s [2002] semantics. Second, we develop a different, but extensionally
equivalent CESK machine that uses a variant of Flatt [1995–2002] lightweight
stack inspection mechanism. Third, we show that our machine uses strictly less
space than the machine derived from Fournet and Gordon’s semantics and that
our machine uses as much space as Clinger’s canonical TCO CESK machine
[Clinger 1998].

The article consists of nine sections. The second section introduces the λsec
language: its syntax, semantics, and security mechanisms. The third section
shows how a pair of tail calls between system and applet code can allocate an
unbounded amount of space. In the fourth section, we derive an extensionally

1Private communication between Guy Steele and second author at POPL 1996.
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equivalent CESK machine from Fournet and Gordon’s [2002] semantics; in the
fifth section, we modify this machine so that it implements all tail calls in a
properly optimized fashion. The sixth section provides a precise analysis of the
space consumption of these machines and shows that our new machine is indeed
TCO. In the seventh section, we discuss the extension of our models for λsec to
the richer environments of existing languages. The last two sections place our
work into context.

2. THE λSEC LANGUAGE

Fournet and Gordon [2002] worked from the λsec-calculus [Pottier et al. 2001;
Skalka and Smith 2000]. This calculus is a simple model of a programming
language with security annotations. They presented two languages: a source
language, in which program components are written, and a target language,
which includes an additional form for security annotations. A trusted anno-
tator performs the translation from the source to the target, annotating each
component with the appropriate permissions.

In this security model, all code is statically annotated with a given set of per-
missions, chosen from a fixed set P. A program component that has permissions
R may choose to enable some or all of these permissions. The set of enabled per-
missions at any point during execution is determined by taking the intersection
of the permissions enabled for the caller and the set of permissions contained
in the callee’s annotation. That is, a permission is considered enabled only if
two conditions are met: first, it must have been legally and explicitly enabled
by some calling procedure, and second, all intervening callers must have been
annotated with this permission.

A program component consists of a set of permissions and a λ-expression from
the source language, (Ms). This language adds three expressions to the basic
call-by-value λ-calculus. The test expression checks to see whether a given set of
permissions is currently enabled, and branches based on that decision. The grant
expression enables a privilege, provided that the context endows it with those
permissions. Finally, the fail expression causes the program to halt immediately,
signaling a security failure. Our particular source language also changes the
traditional presentation of the λ-calculus by adding an explicit name to each
abstraction so that we get concise definitions of recursive procedures.

SYNTAX

C ∈ Components = 〈R, λ f x.Ms〉
M , N = x | M N | λ f x.M | grant R in M

| test R then M else N | fail | R[M ]
x ∈ Identifiers
R ⊆ P

V ∈ Values = x | λ f x.M

The target language (M ) adds a framing expression to this source language
(underlined in the grammar). A frame specifies the permissions of a component
in the source text. To ensure that these framing expressions are present as the
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program is evaluated, we translate source components into target components
by annotating the component’s source term with its permissions. The annota-
tor below performs this annotation, and simultaneously ensures that a grant
expression refers only to those permissions to which it is entitled by its source
location.

ANNOTATOR A : 2P × Ms → M

A〈R, [[x]]〉 = x
A〈R, [[λ f x.M ]]〉 = λ f x.R[A〈R, [[M ]]〉]
A〈R, [[M N ]]〉 = A〈R, [[M ]]〉 A〈R, [[N ]]〉

A〈R, [[grant S in M ]]〉 = grant S ∩ R in A〈R, [[M ]]〉
A〈R, [[test S then M else N ]]〉 = test S then A〈R, [[M ]]〉 else A〈R, [[N ]]〉

A〈R, [[fail]]〉 = fail

The annotator A consumes two arguments: the set of permissions appropri-
ate for the source and the source code; it produces a target expression. It com-
mutes with all expression constructors except for λ and grant. For a λ expression,
it adds a frame expression wrapping the body. For a grant expression, it replaces
the permissions S that the expression specifies with the intersection S ∩ R.
So, if a component containing the expression grant {a, b} in E were annotated
with the permissions {b, c}, the resulting expression would read grant {b} in E ′,
where E ′ represents the recursive annotation of E.

We adapt Fournet and Gordon’s [2002] semantics to our variant of λsec mu-
tatis mutandis. Evaluation of programs is specified using a reduction semantics
based on evaluation contexts [Felleisen and Friedman 1986]. In such a seman-
tics, every expression is divided into an evaluation context containing a single
hole (denoted by •), and a redex. An evaluation context is composed with a redex
by replacing the context’s hole with the redex. The choice of evaluation contexts
determines where evaluation can occur, and typically the evaluation contexts
are chosen to enforce deterministic evaluation; that is, each expression has a
unique decomposition into context and redex. Reduction rules in such a seman-
tics take the form “E[ f ] 	→ E[g ],” where f is a redex, g is its contractum, and
E is the context (which may be observable, as it is in the test rule).

CONTEXTS

E = • | E M | V E | grant R in E | R[E]

REDUCTION RULES

E[λ f x.M V ] 	→ E[[λ f x.M/ f ][V/x]M ]
E[R[V ]] 	→ E[V ]

E[grant R in V ] 	→ E[V ]

E[test R then M else N ] 	→
{

E[M ] if OK〈R, [[E]]〉
E[N ] otherwise

E[fail] 	→ fail
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where

OK〈∅, [[E]]〉
OK〈R, [[•]]〉

OK〈R, [[E[• M ]]]〉 iff OK〈R, [[E]]〉
OK〈R, [[E[V •]]]〉 iff OK〈R, [[E]]〉
OK〈R, [[E[S[•]]]]〉 iff R ⊆ S and OK〈R, [[E]]〉

OK〈R, [[E[grant S in •]]]〉 iff OK〈(R − S), [[E]]〉

This semantics is an extension of a standard call-by-value reduction semantics.
The hole and the two application contexts are standard and enforce left-to-right
evaluation of arguments. The reduction rule for applications is also standard.
The added contexts and reduction rules for frame and grant expressions are
largely transparent; evaluation may proceed inside of either form, and each
one disappears when its expression is a value. These expressions affect the
evaluation only when a test expression occurs as a redex. In this case, the result
of the reduction depends on the OK predicate, which is applied to the current
context and the desired permissions.

The OK predicate recurs over the evaluation context from the inside out,
succeeding either when the permissions remaining to check are empty or when
the context is exhausted.2 The OK predicate commutes with both kinds of ap-
plication context. In the case of a frame annotation, the desired permissions
must occur in the frame, and the predicate must succeed recursively. Finally,
a grant expression removes all permissions it grants from the set of those that
need to be checked.

Finally, the Eval function determines the meaning of a source program. A
program consists of a list of components. Evaluation is performed by annotating
each λ-expression with the permissions of its component, and combining all
such expressions into a single application. This application uses the traditional
abbreviation of a curried application as a single one.

Definition (Eval).

Eval(C, . . .) = V if (A(C) · · ·) ∗	→ V

Since the first component is applied to the rest, it is presumed to represent
the runtime system, or at least a linker. Eval is undefined for programs that
diverge or enter a stuck state.

Minor Differences. The semantics we present differs from that of Fournet
and Gordon [2002] in three ways. First, it reduces programs containing fail to
a final fail state in one step, rather than propagating the fail upward one ex-
pression at a time. We consider this difference trivial and ignore it. Second, our
language includes a named lambda, to simplify the presentation of recursive
examples. Since we present an untyped language, a recursive function always

2In fact, success on an empty permission set may be derived from the other rules in the definition;
the direct statement of this is nevertheless included to simplify understanding.
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has an equivalent form as an application of the Y combinator. Third, our seman-
tics replaces a runtime check in Fournet and Gordon’s semantics with a static
check. Appendix A presents a proof of the equivalence of our evaluator and
theirs.

3. TAIL CALL OPTIMIZATION

Modern functional programming languages avoid looping constructs in favor
of recursion. Doing so keeps the language smaller and simplifies its implemen-
tation. Furthermore, it empowers programmers to match functions and data
structures, which makes programs more comprehensible than random mix-
tures of loops and function calls. Even modern object-oriented programmers
have recognized this fact, as indicated by the inclusion of tail call instructions
in Microsoft’s CLR [Box 2002] and the promotion of traversal strategies such
as the interpreter, composite, or visitor patterns [Gamma et al. 1995].

Of course, if function calls were implemented naı̈vely, this strategy would
introduce an unacceptably large overhead on iterative computations. Each it-
eration would consume a stack frame and long loops would quickly run out of
space. As Guy Steele pointed out in the late 1970s, however, language designers
can have efficiency and a small language if they translate so-called tail calls
into instruction sequences that do not consume any space [Steele Jr. 1977].
Typically, such function calls turn into plain jumps, and hence the translation
of a tail-recursive function equals the translation of an equivalent looping con-
struct. Using this reasoning, the language definitions for Scheme require that
correct implementations must optimize all tail calls and thereby “support an
unbounded number of active tail calls” [Kelsey et al. 1998, p. 7].

At first glance, tail call optimization seems inherently incompatible with
stack inspection. To see this, consider a mutually recursive loop between applet
and library code.

ABBREVIATIONS

UserFn �= λusersys.sys user

SystemFn �= λsysuser.user sys
A〈RA, [[UserFn]]〉 = λusersys.RA[sys user]

A〈RS, [[SystemFn]]〉 = λsysuser.RS[user sys]

REDUCTION (WITH ANNOTATIONS)

A〈RA, [[UserFn]]〉 A〈RS, [[SystemFn]]〉
	→ RA[A〈RS, [[SystemFn]]〉 A〈RA, [[UserFn]]〉]

	→ RA[RS[A〈RA, [[UserFn]]〉 A〈RS, [[SystemFn]]〉]]
	→ RA[RS[RA[A〈RS, [[SystemFn]]〉 A〈RA, [[UserFn]]〉]]]

	→ RA[RS[RA[RS[A〈RA, [[UserFn]]〉 A〈RS, [[SystemFn]]〉]]]]
. . .

REDUCTION (WITHOUT ANNOTATIONS)

UserFn SystemFn
	→ SystemFn UserFn
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	→ UserFn SystemFn
	→ SystemFn UserFn
	→ UserFn SystemFn
. . .

This program consists of two copies of a mutually recursive loop function,
one a “user” component and one a “system” component. Each takes the other as
an argument, and then calls it, passing itself as the sole argument. To simplify
the presentation of the looping functions, we introduce abbreviations for the
user and system procedures.

This program is a toy example, but it represents the core of many interac-
tions between user and system code. For instance, any co-routine-style inter-
action between producer and consumer exhibits this behavior—unfortunately,
programmers are forced to avoid this powerful and natural style in Java pre-
cisely because of the lack of TCO. Perhaps the most common examples of this
kind of interaction occur in OO-style traversals of data structures, such as the
above-mentioned patterns.

The first reduction sequence in the figure shows how λsec evaluates the given
program, where the two procedures are annotated with their permissions. The
context quickly grows without bound in this example. A functional programmer
would expect to see a sequence more like the second one. This series is also a
reduction sequence in λsec, but one that is obtained by evaluating the program’s
pure source, without the security annotations.

As Fournet and Gordon [2002] pointed out in their article, all is not lost. They
introduced an additional reduction into their abstract machine that explicitly
removed a frame before performing a call. Unfortunately, as they pointed out,
indiscriminate application of this rule changes the semantics of the language.
They addressed this problem with a partial list of circumstances in which the
reduction is legal. By casting tail-call elimination as a specific reduction rather
than a property of an abstract machine, Fournet and Gordon failed to realize
that a fully tail-recursive implementation of the language is possible.

4. AN ABSTRACT MACHINE FOR λSEC

Following Clinger’s [1998] work on defining tail-optimized languages via space
complexity classes, we first reformulate the λsec semantics as a CESK machine
[Felleisen and Friedman 1986; Felleisen and Flatt 1989–2002]. We can then
measure the space consumed by machine configurations, programs, and ma-
chines. Furthermore, we can determine whether the space consumption func-
tion of an implementation is in the same complexity class as Clinger’s machine.

4.1 The fg Machine

We begin with a direct translation of λsec’s semantics into a CESK machine,
which we call frame-generating or fg (see Figure 1). A CESK abstract machine
takes its name from its four registers: the control string, the environment,
the store, and the continuation. The control string indicates which program in-
struction is being reduced. In conventional machines, this is called the program
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THE FG MACHINE

Configurations = 〈M , ρ , σ, κ〉 | 〈V , ρ , σ, κ〉 | 〈V , σ 〉 | fail
Final Configurations = 〈V , σ 〉 | fail

κ ∈ Continuations = 〈〉 | 〈push : M , ρ , κ〉 | 〈call : V , κ〉 | 〈frame : R, κ〉 | 〈grant : R, κ〉
V ∈ Values = 〈closure : M , ρ〉

ρ ∈ Environments = Identifiers → f Locations
α, β ∈ Locations

σ ∈ Stores = Locations → f Values
emptyfg = 〈〉

〈λ f x.M , ρ , σ, κ〉 	→fg 〈〈closure : λ f x.M , ρ〉, ρ , σ, κ〉
〈x, ρ , σ, κ〉 	→fg 〈σ (ρ(x)), ρ , σ, κ〉

〈M N , ρ , σ, κ〉 	→fg 〈M , ρ , σ, 〈push : N , ρ , κ〉〉
〈R[M ], ρ , σ, κ〉 	→fg 〈M , ρ , σ, 〈frame : R, κ〉〉

〈grant R in M , ρ , σ, κ〉 	→fg 〈M , ρ , σ, 〈grant : R, κ〉〉
〈test R then M else N , ρ , σ, κ〉 	→fg

{ 〈M , ρ , σ, κ〉 if OKfg〈R, [[κ]]〉
〈N , ρ , σ, κ〉 otherwise

〈fail, ρ , σ, κ〉 	→fg fail

〈V , ρ , σ, 〈〉〉 	→fg 〈V , σ 〉
〈V , ρ , σ, 〈push : M , ρ′, κ〉〉 	→fg 〈M , ρ′, σ, 〈call : V , κ〉〉

〈V , ρ , σ, 〈call : V ′, κ〉〉 	→fg 〈M , ρ′[ f 	→ β][x 	→ α], σ [α 	→ V ][β 	→ V ′], κ〉
if V ′ = 〈closure : λ f x.M , ρ′〉 and α, β �∈ dom(σ )

〈V , ρ , σ, 〈frame : R, κ〉〉 	→fg 〈V , ρ , σ, κ〉
〈V , ρ , σ, 〈grant : R, κ〉〉 	→fg 〈V , ρ , σ, κ〉

〈V , ρ , σ [β, . . . 	→ V ′, . . .], κ〉 	→fg 〈V , ρ , σ, κ〉
if {β, . . .} is nonempty and
β, . . . do not occur in V , ρ, σ , or κ

where

OKfg〈∅, [[κ]]〉
OKfg〈R, [[〈〉]]〉

OKfg〈R, [[〈push : M , ρ , κ〉]]〉 iff OKfg〈R, [[κ]]〉
OKfg〈R, [[〈call : V , κ〉]]〉 iff OKfg〈R, [[κ]]〉

OKfg〈R, [[〈frame : R ′, κ〉]]〉 iff R ⊆ R ′ and OKfg〈R, [[κ]]〉
OKfg〈R, [[〈grant : R ′, κ〉]]〉 iff OKfg〈R − R ′, [[κ]]〉

Fig. 1. The FG machine.

counter. The environment binds variable names to values, much like the current
stack frame of an assembly language machine. The store, like a heap, contains
shared values.3 Finally, the continuation represents the instruction’s control
context; it is analogous to the stack.

The derivation of a CESK machine from a reduction semantics is straight-
forward [Felleisen and Flatt 1989–2002]. In particular, the proof of equivalence
of the two models is a refinement of Felleisen and Flatt’s proof, which proceeds
by a series of transformations from a simple reduction semantics to a register

3The store in our model is necessitated by Clinger’s [1998] model of tail call optimization; a machine
with no store can grow without bound due to copying.
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machine. At each step, we must strengthen the induction hypothesis by adding
a claim about the value of theOK predicate when applied to the current context.

As a result, most of the steps that can be taken in such a machine corre-
spond either to the reductions of the source semantics or to the mechanical
identification of the next expression to be reduced. The first group of reductions
in Figure 1 contains those that refocus the evaluation on subexpressions and
correspondingly extend the continuation. The second, complementary group
contains those that fire when a value shows up as the control string, and these
correspond both to changes of focus in the control string and to actual reduc-
tions. Finally, a machine with a store must also model garbage collection, if
its configurations are to be used in space computations. The final reduction
therefore provides garbage collection.

The new Evalx function is abstracted over a transition relation and an empty
context. Applying this to 	→fg and emptyfg yields the evaluation function Evalfg.

In order to ensure that Eval and Evalfg are indeed the same function, the
Evalx function must employ “load” and “unload” functions. The “load” function,
L, coerces the target program to a valid machine configuration. The “unload”
function, U , recursively substitutes values bound in the environment for the
variables that represent them.

Definition (Evalx).

Evalx(C, . . .) = U(V , σ ) if Lx(C, . . .)
∗	→x 〈V , σ 〉

where

Lx(〈λ f x.Mu0, R0〉, . . .) = 〈(A〈R0, [[λ f x.Mu0]]〉 . . .), ∅, ∅, emptyx〉
and

U(〈closure : M , {〈x1, α1〉, . . . , 〈xn, αn〉}〉, σ ) =
[U(σ (α1))/x1] . . . [U(σ (αn))/xn]M

THEOREM (MACHINE FIDELITY). For all (C, . . .),

Evalfg(C, . . .) = V iff Eval(C, . . .) = V

The proof proceeds by induction on the length of a reduction sequence.

4.2 The fg Machine Is Not TCO

To see that this implementation of the λsec language is not TCO, we show the re-
duction sequence in the fg machine for the program from Section 3, and validate
that the space taken by the configuration is growing without bound.

UserClo �= 〈closure : λusersys.A〈RA, [[UserFn]]〉, ∅〉
SystemClo �= 〈closure : λsysuser.A〈RS, [[SystemFn]]〉, ∅〉

ρ0
�= [sys 	→ α, user 	→ β]

σ0
�= [α 	→ SystemClo, β 	→ UserClo]
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〈A〈RA, [[UserFn]]〉 A〈RS, [[SystemFn]]〉, ∅, ∅, 〈〉〉 (0 frames)
	→fg 〈A〈RA, [[UserFn]]〉, ∅, ∅, 〈push : A〈RS, [[SystemFn]]〉, ∅, 〈〉〉〉
	→fg 〈UserClo, ∅, ∅, 〈push : A〈RS, [[SystemFn]]〉, ∅, 〈〉〉〉
	→fg 〈A〈RS, [[SystemFn]]〉, ∅, ∅, 〈call : UserClo, 〈〉〉〉
	→fg 〈SystemClo, ∅, ∅, 〈call : UserClo, 〈〉〉〉
	→fg 〈RA[sys user], ρ0, σ0, 〈〉〉
	→fg 〈sys user, ρ0, σ0, 〈frame : RA, 〈〉〉〉 (1 frame)
	→fg 〈sys, ρ0, σ0, 〈push : user, ρ0, 〈frame : RA, 〈〉〉〉〉
	→fg 〈SystemClo, ρ0, σ0, 〈push : user, ρ0, 〈frame : RA, 〈〉〉〉〉
	→fg 〈user, ρ0, σ0, 〈call : SystemClo, 〈frame : RA, 〈〉〉〉〉
	→fg 〈UserClo, ρ0, σ0, 〈call : SystemClo, 〈frame : RA, 〈〉〉〉〉
2	→fg 〈RS[user sys], ρ0, σ0, 〈frame : RA, 〈〉〉〉

	→fg 〈user sys, ρ0, σ0, 〈frame : RS, 〈frame : RA, 〈〉〉〉〉 (2 frames)
	→fg 〈user, ρ0, σ0, 〈push : sys, ρ0, 〈frame : RS, 〈frame : RA, 〈〉〉〉〉〉
	→fg 〈UserClo, ρ0, σ0, 〈push : sys, ρ0, 〈frame : RS, 〈frame : RA, 〈〉〉〉〉〉
	→fg 〈sys, ρ0, σ0, 〈call : UserClo, 〈frame : RS, 〈frame : RA, 〈〉〉〉〉〉
	→fg 〈SystemClo, ρ0, σ0, 〈call : UserClo, 〈frame : RS, 〈frame : RA, 〈〉〉〉〉〉
7	→fg 〈UserClo, ρ0, σ0, (3 frames)

〈call : SystemClo, 〈frame : RA, 〈frame : RS, 〈frame : RA, 〈〉〉〉〉〉〉
7	→fg 〈SystemClo, ρ0, σ0, (4 frames)

〈call : UserClo, 〈frame : RS, 〈frame : RA, 〈frame : RS, 〈frame : RA, 〈〉〉〉〉〉〉〉
. . .

5. AN ALTERNATIVE IMPLEMENTATION

5.1 How Security Inspections Really Work

A close look at λsec shows that frame (�[•]) and grant contexts affect the compu-
tation only when they are observed by a test expression. That is, a program with
no test expressions may be simplified by removing all frame and grant expres-
sions without changing its meaning. Furthermore, the observations possible
with the test expression are limited by the OK function.

In particular, any sequence of frame and grant expressions may be collapsed
into a canonical table that provides a partial map from the set of permissions to
one of two conditions: “no,” indicating that the permission is not granted by the
sequence, and “grant,” indicating that the permission is granted (and legally
so) by some grant frame in the sequence.

To derive update rules for this table, we consider evaluation of the OK func-
tion as the recognition of a context-free grammar over the alphabet of frame
and grant expressions. We start by simplifying the model to one with a single
permission. Then each frame is either empty or contains the desired permis-
sion. Likewise, there is only one possible grant. All other continuation frames
are irrelevant. So a full evaluation context can be seen as an arbitrary string in
the alphabet 	 = { y , n, g}, where y and n represent frames that contain or are
missing the given permission, and g represents a grant. Assume the ordering of
the letters in the word places the outermost frames at the left end of the string.
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With the grammar in place, the OKfg predicate can easily be interpreted as
a finite-state machine that recognizes the regular expression 	∗gy∗, that is, a
string ending with a grant followed by any number of y ’s. The resulting FSA
has just two states, one accepting and one nonaccepting. A g always transitions
to the accepting state, and a n always transitions to the nonaccepting state. A
y causes a (trivial) transition to the current state.

This last observation leads us to a further simplification of the grammar.
Since the presence of the character y does not affect the decision of the FSA,
we may ignore the continuation frames that generate them, and consider only
the grant frames and those security frames that do not include the desired per-
mission. The regular expression indicating the success of OKfg becomes simply
	∗ g .

This simplification leads to an insight about the security model of λsec. In
the automaton that λsec induces, the y may be ignored. In the security model,
then, callers with a given permission do not affect the result of a check for
that permission. Rather, it is the callers without that permission that might
change its status, and grants of that permission. This suggests that what the
security model really tracks is the absence of certain permissions. At run-
time, then, it is the complement of the permissions attributed to a caller that
matters.

Applying the simplified grammar to our reduction semantics allows us to
collapse uninterrupted sequences of frame and grant expressions that occur in
the evaluation context. A substring ending in a g results in an accepting state,
a substring ending in an n results in a nonaccepting state, and the empty
substring does not alter the decision. To extend this to the whole language, we
must expand our single-permission state to a full table of permissions.

5.2 The cm Machine

In the cm (continuation-marks) machine, each continuation frame contains a
table of permissions, called a mark. The evaluation steps for frame and grant
expressions update the table in the enclosing continuation, rather than increas-
ing the length of the continuation itself. The OKcm predicate now inspects these
marks, rather than the frame and grant elements of the continuation. Other-
wise, the cm machine is the same as the fg machine.

Figure 2 shows the definition of the cm machine. Note that the framing op-
eration takes the complement of the set R, in accordance with the insight of
the prior section. Also, the mark mappings are extended pointwise across sets
of permissions; that is, m[R → c](p) = c if p ∈ R, and m(p) otherwise.

The Evalcm function is another instance of Evalx . That is, Evalcm is the same
as Evalfg, except that it uses 	→cm as its transition function and emptycm as its
empty continuation.

The two machines produce the same results.

THEOREM (MACHINE EQUIVALENCE). For all (C, . . .),

Evalfg(C, . . .) = V iff Evalcm(C, . . .) = V
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THE CM MACHINE

m ∈ marks = P → f {grant, no}
Configurations = 〈M , ρ , σ, κ〉 | 〈V , ρ , σ, κ〉 | 〈V , σ 〉 | fail

Final Configurations = 〈V , σ 〉 | fail
κ ∈ continuations = 〈empty : m〉 | 〈push : M , ρ , κ, m〉 | 〈call : V , κ, m〉

V ∈ Values = 〈closure : M , ρ〉
ρ ∈ Environments = Identifiers → f Locations

α, β ∈ Locations
σ ∈ Stores = Locations → f Values

emptycm = 〈empty : ∅〉

〈λ f x.M , ρ , σ, κ〉 	→cm 〈〈closure : λ f x.M , ρ〉, ρ , σ, κ〉
〈x, ρ , σ, κ〉 	→cm 〈σ (ρ(x)), ρ , σ, κ〉

〈M N , ρ , σ, κ〉 	→cm 〈M , ρ , σ, 〈push : N , ρ , κ, ∅〉〉
〈R[M ], ρ , σ, κ〉 	→cm 〈M , ρ , σ, κ[R 	→ no]〉

〈grant R in M , ρ , σ, κ〉 	→cm 〈M , ρ , σ, κ[R 	→ grant]〉
〈test R then M else N , ρ , σ, κ〉 	→cm

{ 〈M , ρ , σ, κ〉 if OKcm〈R, [[κ]]〉
〈N , ρ , σ, κ〉 otherwise

〈fail, ρ , σ, κ〉 	→cm fail

〈V , ρ , σ, 〈empty : m〉〉 	→cm 〈V , σ 〉
〈V , ρ , σ, 〈push : M , ρ′, κ, m〉〉 	→cm 〈M , ρ′, σ, 〈call : V , κ, ∅〉〉

〈V , ρ , σ, 〈call : V ′, κ, m〉〉 	→cm 〈M , ρ′[ f 	→ β][x 	→ α], σ [α 	→ V ][β 	→ V ′], κ〉
if V ′ = 〈closure : λ f x.M , ρ′〉 and α, β �∈ dom(σ )

〈V , ρ , σ [β, . . . 	→ V , . . .], κ〉 	→cm 〈V , ρ , σ, κ〉
if {β, . . .} is nonempty and
β, . . . do not occur in V , ρ, σ , or κ

where

〈. . . , m〉[R 	→ c] = 〈. . . , m[R 	→ c]〉 (pointwise extension)

and

OKcm〈∅, [[κ]]〉
OKcm〈R, [[〈empty : m〉]]〉 iff (R ∩ m−1(no) = ∅)

OKcm〈R, [[〈push : M , ρ , κ, m〉]]〉
OKcm〈R, [[〈call : V , κ, m〉]]〉

}
iff (R ∩ m−1(no) = ∅) and OKcm〈R − m−1(grant), [[κ]]〉

Fig. 2. The CM machine.

To prove this theorem, we must show that if the fg machine terminates, the cm
machine terminates with the same value, and that if the fg machine does not
terminate in a final state, then the cm machine also fails to terminate.

For the purposes of the proof, we assume that no garbage collection steps are
taken, because garbage collection cannot affect the result of the evaluation.

LEMMA (NO GARBAGE COLLECTION). For every evaluation sequence in either
the fg or cm machine, removing every garbage-collection step produces another
legal sequence, and no divergent computation is made finite by such a removal.

To compare the machines, we introduce the function T .
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T : Cfg → Ccm

T 〈M , ρ , σ, κ〉 = 〈M , ρ , σ, T (κ)〉
T 〈V , ρ , σ, κ〉 = 〈V , ρ , σ, T (κ)〉

T 〈V , σ 〉 = 〈V , σ 〉
T (fail) = fail

T 〈〉 = 〈empty : ∅〉
T 〈push : M , ρ , κ〉 = 〈push : M , ρ , T (κ), ∅〉

T 〈call : V , κ〉 = 〈call : V , T (κ), ∅〉
T 〈frame : R, κ〉 = T (κ)[R 	→ no]
T 〈grant : R, κ〉 = T (κ)[R 	→ grant]

The function T maps configurations of the fg machine to configurations of
the cm machine. A step in the fg machine corresponds to either no steps or one
step in the cm machine.

LEMMA (SIMULATION). Given a configuration Ccm, with Ccm = T (Cfg), one of
the following holds:

(1) Cfg is either fail or 〈V , σ 〉.
(2) Cfg and Ccm are both stuck.
(3) Cfg 	→fg C′

fg and T (C′
fg) = Ccm.

(4) Cfg 	→fg C′
fg and Ccm 	→cm T (C′

fg).

The proof is a case analysis on the four cases and the configurations of the
machine. The fg machine takes extra steps only when popping frame and grant
continuations after reducing their arguments to values.

The cm machine can always represent a sequence of frame and grant expres-
sions with a single mark. The sequence of steps below illustrates this for the
divergent mutually recursive computation shown in Section 3.

RS
�= {b, c}

RA
�= {a, b}

〈A〈RA, [[UserFn]]〉 A〈RS, [[SystemFn]]〉, ∅, ∅, 〈empty : ∅〉〉
	→cm 〈A〈RA, [[UserFn]]〉, ∅, ∅, 〈push : A〈RS, [[SystemFn]]〉, ∅, 〈empty : ∅〉, ∅〉〉
	→cm 〈UserClo, ∅, ∅, 〈push : A〈RS, [[SystemFn]]〉, ∅, 〈empty : ∅〉, ∅〉〉
	→cm 〈A〈RS, [[SystemFn]]〉, ∅, ∅, 〈call : UserClo, 〈empty : ∅〉, ∅〉〉
	→cm 〈SystemClo, ∅, ∅, 〈call : UserClo, 〈empty : ∅〉, ∅〉〉
	→cm 〈RA[sys user], ρ0, σ0, 〈empty : ∅〉〉
	→cm 〈sys user, ρ0, σ0, 〈empty : [{c} 	→ no]〉〉
	→cm 〈sys, ρ0, σ0, 〈push : user, ρ0, 〈empty : [{c} 	→ no]〉〉〉
	→cm 〈SystemClo, ρ0, σ0, 〈push : user, ρ0, 〈empty : [{c} 	→ no]〉, ∅〉〉
	→cm 〈user, ρ0, σ0, 〈call : SystemClo, 〈empty : [{c} 	→ no]〉, ∅〉〉
	→cm 〈UserClo, ρ0, σ0, 〈call : SystemClo, 〈empty : [{c} 	→ no]〉, ∅〉〉
2	→cm 〈RS[user sys], ρ0, σ0, 〈empty : [{c} 	→ no]〉〉
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	→cm 〈user sys, ρ0, σ0, 〈empty : [{a, c} 	→ no]〉〉
	→cm 〈user, ρ0, σ0, 〈push : sys, ρ0, 〈empty : [{a, c} 	→ no]〉〉〉
	→cm 〈UserClo, ρ0, σ0, 〈push : sys, ρ0, 〈empty : [{a, c} 	→ no]〉, ∅〉〉
	→cm 〈sys, ρ0, σ0, 〈call : UserClo, 〈empty : [{a, c} 	→ no]〉, ∅〉〉
	→cm 〈SystemClo, ρ0, σ0, 〈call : UserClo, 〈empty : [{a, c} 	→ no]〉, ∅〉〉
7	→cm 〈UserClo, ρ0, σ0, 〈call : SystemClo, 〈empty : [{a, c} 	→ no]〉, ∅〉〉
7	→cm 〈SystemClo, ρ0, σ0, 〈call : UserClo, 〈empty : [{a, c} 	→ no]〉, ∅〉〉

. . .

6. SPACE CONSUMPTION

In “Proper Tail Recursion and Space Efficiency,” Clinger [1998] described a
framework that characterizes the memory behavior of a language implemen-
tation as a mapping from programs to the maximum memory that the im-
plementation consumes while evaluating that program. He demonstrated the
difference between various named classes of implementation (“tail-recursive,”
“safe-for-space,” etc.), and defined asymptotic space complexity classes for each,
based on abstract machine definitions.

In order to apply Clinger’s [1998] analytic framework of tail recursion to the fg
and cm machines, we must define a memory measure that maps a machine con-
figuration to a real number. The measure for the fg machine is straightforward.

space(fail) = 1
space(〈V , σ 〉) = space(V ) + space(σ )

space(〈M , ρ , σ, κ〉) = |dom(ρ)| + space(κ) + space(σ )
space(〈V , ρ , σ, κ〉) = space(V ) + |dom(ρ)| + space(κ)+

space(σ )

space(〈closure : λ f x.M , ρ〉) = 1 + |dom(ρ)|

space(σ ) = ∑
α∈dom(σ ) 1 + space(σ (α))

space(〈〉) = 1
space(〈push : M , ρ , κ〉) = 1 + |dom(ρ)| + space(κ)

space(〈call : V , κ〉) = 1 + space(V ) + space(κ)
space(〈frame : R, κ〉) = 1 + |R| + space(κ)
space(〈grant : R, κ〉) = 1 + |R| + space(κ)

To accommodate the cm machine, we extend this function with rules for the
size of a mark, and for the size of continuations that contain a mark.

space(〈empty : m〉) = 1 + space(m)
space(〈push : M , ρ , κ, m〉) = 1 + space(ρ) + space(κ) + |dom(m)|

space(〈call : V , κ, m〉) = 1 + space(V ) + space(κ) + |dom(m)|
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The space functions Sfg and Scm are defined as the maximum amount of
memory consumed during the evaluation of a program. In order to ensure that
unreachable store values do not affect the space function, Clinger [1998] de-
fined a “space-efficient” computation as a sequence of steps where the garbage-
collection rule is applied as often as possible.

Definition (Space-Efficient Computations). A space-efficient computation
in an implementation x is a finite or countably infinite sequence of configu-
rations {Ci} such that

—If Ci and Ci+1 are in the sequence, then Ci 	→x Ci+1.
—If the sequence is finite, then it ends with a final configuration.
—If the garbage collection rule is applicable to Ci, then Ci 	→x Ci+1 by the

garbage collection rule.

Definition (Supremum). If R ⊆ , then the supremum Sup(R) is the least
upper bound of R, or ∞ if no such bound exists.

Definition (Space Consumption Sx). The space consumption function of an
implementation x is Sx : Program → R ∪ {∞} defined by

Sx(P ) = |P | +
sup{sup{space({Ci})}|

{Ci} is a space-efficient
computation in x, with
C0 = Lx(P )}

where |P | is the number of nodes in the abstract syntax tree of P .

Note that the outer “supremum” accommodates the possibility of an imple-
mentation that is observationally nondeterministic. This definition is therefore
sufficient but overly general.

Following Clinger [1998], we extend the notion of a space function to one of
asymptotic space complexity.

Definition (Asymptotic Complexity, O( f )). If A is any set, and f : A →
R ∪ {∞}, then the asymptotic (upper bound) complexity class of f is O( f ),
which is defined as the set of all functions g : A → R ∪ {∞} for which there
exist real constants c1 and c0 such that c1 > 0 and

∀a ∈ A.g (a) ≤ c1 f (a) + c0

We can now prove that the asymptotic space consumption of the fg machine
is strictly greater than that of the cm machine. Put differently, the class of
implementations for λsec in O(Scm) is strictly smaller that those in O(Sfg).

THEOREM (SPACE COMPARISON).

O(Scm) � O(Sfg)
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PROOF SKETCH. The proof has two parts. First, we must show that every
function in O(Scm) is also in O(Sfg). Second, we must show there is a function
in O(Sfg) that is not in O(Scm).

Since the set O(Scm) takes Scm as its asymptotic upper bound, it suffices
for the first half of the proof to show that Scm is in the set O(Sfg). That is, for
all programs, the maximum space taken while evaluating the program in the
cm machine is less than or equal to some constant times the space that the fg
machine takes. For simplicity, we shall choose a loose upper bound, taking as
our constant the size of the set of permissions P.

The translation T removes frame and grant continuation frames and intro-
duces marks on each remaining frame, leaving all else untouched. We can there-
fore show that our bound is satisfied by considering the worst case, in which
the fg machine contains no frame or grant continuations, and each mark in the
cm machine contains an entry for every possible permission. In this case, each
frame is increased in size by the size of P. Since each frame in the fg machine
is at least of size 1, we may take |P| as our linear factor to satisfy the bound.

For the second half of the proof, it suffices to show a program whose machine
configuration grows without bound in the fg machine and does not in the cm
machine. The example given earlier satisfies this requirement.

To prove that our implementation is tail-recursive by Clinger’s [1998] defi-
nition, we must extend his language to include the new forms that appear in
λsec. In order to produce the most stringent possible requirement on space con-
sumption, we propose an implementation that includes a security oracle. That
is, we compare ourselves to an implementation that consumes no space at all
for the maintenance of stack-trace information. Because of the similarity be-
tween the fg machine and Clinger’s, the easiest way to model this is to consider
the space measure obtained by eliminating the size of the mark from the calcu-
lation. We therefore define the oracular space measure “spaceo,” which differs
from the existing function only in its rules for continuations.

spaceo(〈empty : m〉) = 1
spaceo(〈push : M , ρ , κ, m〉) = 1 + space(ρ) + spaceo(κ)

spaceo(〈call : V , κ, m〉) = 1 + space(V ) + spaceo(κ)

Combining this space measure with the existing cm machine, we define the
space class So of implementations that consume no memory at all for security
information. We can now prove that the cm machine is tail-recursive.

THEOREM (TAIL RECURSION).

O(Scm) = O(So)

PROOF SKETCH. To show set equality of asymptotic measures, it suffices to
show that Scm ∈ O(So) and that So ∈ O(Scm).

Since these two space classes use the same machine semantics, we may use
the identity function to translate between configurations, and the proof of in-
tensional language equality is trivial.
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For the first half of the proof, we must show that the non-oracular mea-
sure of a configuration’s space (spacecm(C)) is at most k times as large as the
space taken by the oracular measurement (spaceo(C)). As in the previous proof,
we choose as our constant the size of the permission set (|P|). The non-oracular
space measure increases the size of a continuation frame by at most |P|, and ev-
ery continuation frame is of size at least 1, so the space taken by a configuration
grows by no more than a factor of |P|.

The other direction is much easier, since simple inspection of the rules for
the oracular space function reveals that this function is uniformly smaller for
a given configuration than the non-oracular space measure.

7. THE RICHER MODELS OF JAVA AND .NET

The model of Fournet and Gordon [2002] is an abstraction of Java’s and .Net’s
security model. Both Java and .Net associate program text with permissions
and perform security checks by “walking the stack.” Both Java and .Net, how-
ever, feature a richer security model than λsec does.

One difference is that the set of permissions is not fixed at compile or even
at load time. In both Java and .Net, every object that subclasses a Permission
class becomes a permission in the security system.

Also, these systems may permit the mappings from code to permissions to
be mutated at runtime. In Java 1.2, however, the default implementation does
not allow this. That is, the mapping from code to permissions is performed at
class-loading time, and not subsequently altered [Gong 1999]. We are not aware
of such a guarantee in .Net.

These differences, however, do not invalidate the principal invariant that
underlies our proposed marriage of security and TCO. Specifically, the secu-
rity information retained by the system can only be observed by a security-
checking system call. This means that the representation of this information
(and the implementation of the corresponding security-checking primitive) may
be changed, as long as these changes preserve the observable behavior of the
system.

In addition, all of the systems we have examined share the trait that the
frame expressions—or the corresponding constructs in Java or .Net—may be
reordered, up to the boundaries established by a grant (or .Net’s “assert”).

The first step in applying the lessons of our work to a given system is to
formulate an appropriate model. For languages like Java, Java’s JVM, or .Net’s
intermediate language, this model should probably extend λsec with assign-
ment, objects with subclassing, exceptions, and dynamic loading.

The next step is to formulate the notion of TCO in such a system. This is
fairly natural for any model that treats function application as the transfer of
control to a given source location with an unchanged continuation.

The final step is to extend the system with mechanisms for maintaining
security state, and to demonstrate that these additions do not affect the tail-
recursive behavior of the model.

Fundamentally, our approach separates the implementation of function calls
from the implementation of security primitives. In other words, it decouples the
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security mechanism from the memory behavior of stack frames. This differs
from the existing implementations, which capitalize on unanticipated observa-
tions at the machine level and therefore restrict the set of possible language
implementations.

We conjecture that the security-policy implementation that results from such
an analysis is likely to have much in common with our CESK machines. That
is, the security information will be attached to the stack frame of the parent,
rather than the stack frame of the child. Garbage-collection-like strategies for
the management of such information could be employed to maintain asymp-
totic memory behavior while delaying runtime costs until the application of a
security check.

8. RELATED WORK

This article was directly inspired by the POPL presentation of a semantics for
stack inspection by Fournet and Gordon [2002], and by our earlier research on
an algebraic stepper for DrScheme [Clements et al. 2001], where we produced
a portable and provably correct algebraic stepper, based on a novel, lightweight
stack inspection mechanism. Using a primitive function, a program can place
continuation marks on the stack and inquire about existing marks. If a function
places two marks on the stack, the runtime environment replaces the first
with the second. Hence, the manipulation of continuation marks automatically
preserves tail call optimizations. The key difference between our earlier work
and this article is that continuation marks for security permissions contain
negative rather than positive information. Once we understood this, we could
derive the rest of the ideas here in a straightforward manner.

8.1 Security-Passing Style

Another implementation strategy for stack inspection was due to Wallach et al.
[1997, 2000]. In security-passing style, each procedure accepts an additional
argument that represents the security context accumulated thus far.

Essentially, this implementation derives from the observation that the secu-
rity information computed on some context does not change while that context
remains active. Therefore, an implementation can compute the security infor-
mation (or some representation thereof) once, at each call site, and pass it along
during the computation.

As a tool of semantic definition, we believe that security-passing style suc-
ceeds. That is, the given transformation, when combined with a semantics for
the underlying target language, does specify a meaning for each of the security
primitives. However, we find the semantics of Fournet and Gordon [2002] to be
simpler, as they directly interpret the language of security primitives.

As a tool of implementation, we believe security-passing style leaves some-
thing to be desired. In particular, the simple overhead of adding an argument
to each call is prohibitive. It is certainly the case that a variety of optimizations
may be applied to lower the runtime cost, but in this case we contend that our
implementation strategy is a more direct route to a similar optimized machine.
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8.2 Other Work

Several others [Benton et al. 1998; Schinz and Odersky 2001] have considered
the problem of adding tail calls to the JVM, which does support stack inspec-
tion. However, none of these specifically addressed stack inspection or security,
and all of them made the simplifying assumption that TCO was only possible
between procedures of the same component; that is, none of them considered
calls between code from distinct security domains.

Karjoth [2000] presented a semantics for access control in Java 2; his model
presents rules for the maintenance of access control information, but leaves the
rules for the evaluation of the language itself unspecified. Because he included
rules for matching “call” and “return” expressions, his system cannot be the
foundation for a TCO implementation.

Erlingsson and Schneider [2000] showed how to implement the stack inspec-
tion primitives with no support from the runtime system. That is, they used
an annotation-based approach to transform a program with security primitives
into one without them. However, this work winds up simulating the stack on
the side, with two unfortunate consequences: exceptions become much more
difficult, and TCO is destroyed.

9. CONCLUSIONS

Our article invalidates the widely held belief among programming language re-
searchers that a global tail call optimization policy is incompatible with stack
inspection for security policies. We have developed an alternative implemen-
tation of stack inspection; we proved that it preserves the observable behavior
of all programs; and we showed that its notion of tail call is consistent with
Clinger’s [1998] mathematical notion of tail call optimization. It is our belief
that translating our ideas into a compiler or a virtual machine imposes no ad-
ditional cost on the implementation of any other construct. We expect that such
an implementation will perform as well or better than a conventional stack
inspection implementation.

This article also outlines a technique for the development of a security model
in a tail-recursive language. That is, by recasting the security model in the
terms of continuations and observations of continuations, an implementor can
naturally derive a tail-recursive implementation of his language. Finally, our
article offers lessons for language designers about the coexistence of stack in-
spection and TCO. The natural next step is to apply these lessons to produce
implementations of existing languages that support both stack inspection and
TCO and that perform well.

APPENDIX: EQUIVALENCE OF FOURNET AND GORDON’S EVALUATOR
AND THE ONE PRESENTED IN THIS ARTICLE

The model we use for reductions on λsec differs from that given by Fournet and
Gordon [2002] in three minor ways, as mentioned in Section 2. Of these, the
only difference that requires explanation is our substitution of a static rewriting
step for their dynamic check on grant expressions. Briefly, this static check is
possible because all program code is a part of some component, and is therefore
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initially annotated with permissions. Inspection of the semantics shows that a
frame expression always accompanies each grant expression, and therefore that
part of its behavior can be predicted. In particular, the dynamic restriction of
a grant’s permissions to that of the nearest enclosing frame expression can be
performed at the time of annotation.

To argue this equivalence more formally, we model the original semantics
with a modified reduction function 	→o. The definition of 	→o differs from that
of 	→ only in that the reference to OK is replaced by a reference to OKo. This
modified predicate dynamically restricts the permissions enabled by a grant to
those appearing in its nearest enclosing frame expression, using an auxiliary
Static function. The function 	→o therefore models the original semantics of
Fournet and Gordon.

ORIGINAL PERMISSIONS CHECK OKo ⊆ 2P × E

OKo〈R, [[•]]〉
OKo〈R, [[E[• M ]]]〉 iff OKo〈R, [[E]]〉
OKo〈R, [[E[V •]]]〉 iff OKo〈R, [[E]]〉
OKo〈R, [[E[S[•]]]]〉 iff R ⊆ S and OKo〈R, [[E]]〉

OKo〈R, [[E[grant S in •]]]〉 iff OKo〈R − Static〈S, [[E]]〉, [[E]]〉
where

Static〈R, [[•]]〉 = R
Static〈R, [[E[• M ]]]〉 = Static〈R, [[E]]〉
Static〈R, [[E[V •]]]〉 = Static〈R, [[E]]〉
Static〈R, [[E[S[•]]]]〉 = R ∩ S

Static〈R, [[E[grant S in •]]]〉 = Static〈R, [[E]]〉

To extend the reduction function 	→o to an evaluation function, we must prefix
evaluation with an annotator as before. This annotator, Ao, differs from A in
that it does not restrict the permissions in grant expressions to those attached
to the entire component.

Definition (Evalo).

Evalo(C, . . .) = V if (Ao(C) · · ·) ∗	→o V

where

Ao〈R, [[x]]〉 = x
Ao〈R, [[λ f x.M ]]〉 = λ f x.R[Ao〈R, [[M ]]〉]
Ao〈R, [[M N ]]〉 = Ao〈R, [[M ]]〉 Ao〈R, [[N ]]〉

Ao〈R, [[grant S in M ]]〉 = grant S in Ao〈R, [[M ]]〉
Ao〈R, [[test S then M else N ]]〉 = test S then Ao〈R, [[M ]]〉 else Ao〈R, [[N ]]〉

Ao〈R, [[fail]]〉 = fail

With these definitions in place, we can state the claim that the Eval functions
are equal, modulo Fournet and Gordon’s [2002] notion of contextual equivalence
(≡o).
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PROPOSITION (STATIC PERMISSIONS CHECK). For any components (A0, . . .),

Eval (A0, . . .) = U iff Evalo(A0, . . .) = V where U ≡o V

PROOF SKETCH. The proof proceeds in two steps. First, we establish the equiv-
alence (modulo contextual equivalence) of Evalo (the composition of Ao and 	→∗

o)
and the composition of A and 	→∗

o. Second, we establish the equivalence of this
composition and Eval (the composition of A and 	→∗) when applied to terms
that satisfy a new predicate B, which describes the results of A.

The two steps require three lemmas:

(1) For all programs (A, . . .), (A(A), . . .) ≡o (Ao(A), . . .).
(2) For all programs (A, . . .), B(∅, [[(A(A) · · ·)]]).
(3) For all terms M , B(∅, [[M ]]) implies that M 	→o V iff M 	→ V .

Lemma 1 implements the first step, Lemma 3 corresponds to the third step,
and Lemma 2 provides the glue.

LEMMA 1 PROOF SKETCH. The translations Ao and A differ in their treatment
of grant; A restricts the permissions contained in the grant to those that appear
in the component’s permissions, and A doesn’t. This alteration may be derived
from the following equations in Fournet and Gordon’s [2002] contextual equiv-
alence theory:

SELECTED EQUATIONS

(Frame Frame Appl) : R1[R2[e1 e2]] ≡o R1[R2[R1[R2[e1]] R1[R2[e2]]]]
(Frame Frame) : R1 ⊇ R2 ⇒ R1[R2[e]] ≡o R2[e]
(Frame Grant) : R1[grant R2 in e] ≡o R1[grant R1 ∩ R2 in e]

(Frame Grant Frame) : R1 ⊇ R2 ⇒ R1[grant R2 in R3[e]] ≡o R1[R3[grant R2 in e]]
(Frame Test Then) : R1 ⊇ R2 ⇒ R1[test R2 then e1 else e2]

≡o test R2 then R1[e1] else R1[e2]
(Frame Test Else) : ¬(R1 ⊇ R2) ⇒ R1[test R2 then e1 else e2] ≡o R1[e2]

For a given component 〈R, M 〉, its annotation in Fournet and Gordon’s [2002]
system is Ao〈R, M 〉. Since each top-level component expression M must be a
λ-expression, at least one frame expression lies outside any grant that the com-
ponent contains. Using the contextual equivalence theory, we can propagate
frame expressions inward past any syntactic constructions other than abstrac-
tion. The only interesting case is grant, where pushing the frame inward requires
the application of the Frame-Grant, Frame-Frame, Frame-Grant-Frame, and
Frame-Frame equations. Since all abstraction bodies are wrapped in frame
expressions with the component’s permissions, this calculation leaves each
grant expression wrapped with a frame expression. Then, the Frame-Grant
rule justifies the intersection of the two sets of permissions. Finally, a rever-
sal of the calculation applied thus far may be used to remove the inserted
frame expressions. This leaves us with A(R, [[M ]]). By this reasoning, sub-
stituting A for Ao in the definition of Evalo yields contextually equivalent
results.
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To make the second major step of the proof, we introduce the predicate B.

LEGAL GRANTS PREDICATE B ⊆ 2P × M

B〈R, [[x]]〉
B〈R, [[λ f x.M ]]〉 iff B〈∅, [[M ]]〉
B〈R, [[M N ]]〉 iff B〈R, [[M ]]〉 B〈R, [[N ]]〉
B〈R, [[S[M ]]]〉 iff B〈S, [[M ]]〉

B〈R, [[grant S in M ]]〉 iff S ⊆ R and B〈R, [[M ]]〉
B〈R, [[test S then M else N ]]〉 iff B〈R, [[M ]]〉 and B〈R, [[N ]]〉

B〈R, [[fail]]〉

The predicate B checks two arguments: a set of permissions and an expres-
sion. It is satisfied4 when all grant expressions refer to permissions that appear
in the nearest enclosing frame expression, looking no further than the nearest
λ boundary.

LEMMA 2 PROOF SKETCH. The predicate B formulates what the annota-
tor A enforces; namely, that grant expressions refer only to permissions ac-
corded to their components. The proof proceeds by induction on the size of
the program. The natural induction hypothesis states that for any R and M ,
B(R, A(R, [[M ]])). That is, the annotation of M with R satisfies B with per-
mission set R. However, we must strengthen the induction hypothesis for λ-
expressions to state that B(∅, A(R, [[λ f x.M ]]). In other words, the annotation
of a lambda term satisfies B with the empty permissions set.

LEMMA 3 PROOF SKETCH. We must now prove that the relations 	→ and 	→o act
identically on terms that satisfy B. First, we show that OK and OKo are equiv-
alent for evaluation contexts formed from expressions that satisfy B. Second,
a subject reduction proof shows that satisfaction of B is preserved by both 	→
and 	→o.

Suppose M satisfies B, and M = E[N ]. Then for any R, OKo(R, [[E]]) iff
OK(R, [[E]]). The satisfaction of B guarantees that Static acts as the identity;
the permissions attached to a grant are already restricted to those occurring in
the nearest enclosing frame.

The subject reduction proof is largely mechanical. The only interesting cases
are those in which a frame is removed and those involving a βv reduction. In
each case, the key observation is that λ expressions are self-contained. By this
we mean that the value ofB(R, [[λ f x.M ]]) does not depend on R at all. Therefore,
substituting a value (that is, a lambda expression) that satisfies B for any other
expression does not change an expression that satisfies B into one that doesn’t.
Furthermore, this argument applies to the bodies of abstractions as well. That
is, if a term before a substitution satisfied B and contained the term λ f x.M , we
may conclude that B(∅, [[M ]]), which implies that for any choice of R, B(R, [[M ]])
also holds, and therefore that the substitution of the term M for another term
preserves satisfaction. Both of the reductions of interest consist entirely of one

4The statement “M satisfies B” is taken to mean that B(∅, [[M ]]), or (equivalently) 〈∅, [[M ]]〉 ∈ B.
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or more such substitutions, and must therefore preserve satisfaction of B. This
argument applies without modification to both 	→ and 	→o.

With these two pieces in hand, a simple case analysis shows that 	→ and 	→o
behave identically on terms that satisfy B.

Taken together, the three lemmas allow us to conclude that our proposition
holds.
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