
Portable and high-level access to the stack with
Continuation Marks

A dissertation presented
by

John Clements

to
the College of Computer and Information Science

In partial fulfillment of the requirements for the degree of
Doctor of Philosophy

in the field of

Computer Science

Northeastern University
Boston, Massachusetts

February 8, 2006

c©2005
John Brinckerhoff Clements

All Rights Reserved

Abstract

My dissertation presents and defends the thesis that lightweight stack in-
spection improves the implementation of intensional programming tools and
programming language extensions.

Intensional programming tools, such as debuggers, need to observe and
change the function call behavior of programs as they run. Intensional pro-
gramming language extensions, such as aspect-oriented programming, behave
similarly. Traditionally, these tools and extensions are granted privileged access
to the evaluator’s implementation details, particularly the stack. This design
can stall further development, particularly the extension of these tools to new
platforms and new versions of the evaluator.

To solve some of these problems, we propose an alternate architecture. An
extension of the language, ”continuation marks,” allows these tools to obtain
runtime information without special privilege, and to operate as annotators on
the source language. We claim that this language feature is a simple addition
to many runtime systems. We further claim that this architecture results in
tools and extensions that are more portable and well-defined.

In order to support our claims, we have successfully applied it to three
different problems. First, we designed and implemented a stepping debugger.
Second, we showed how a security feature, stack inspection, may be expressed.
Finally, we consider the implementation of aspects, and particularly those as-
pects that require information about control flow.

iii

iv

A Failed Dedication

No dedication could possibly do justice to the debt I owe to my wife, Anika.

v

vi

Contents

Contents vii

List of Figures ix

1 Introduction 1

2 Continuation Marks 3
2.1 Intuition . 3
2.2 The Importance of Tail-Calling 6
2.3 An Implementation in Scheme 9

3 A Stepper built with Continuation Marks 17
3.1 A Stepper for Scheme . 17
3.2 The Continuation Mark Architecture 18
3.3 Modeling a Stepper . 24
3.4 Correctness . 29
3.5 Notes on Proof Methods . 50
3.6 The Pragmatics of a Stepper 51
3.7 Related Work . 53

4 Stack Inspection implemented with Continuation Marks 55
4.1 Stacks, Security, and Tail Calls 55
4.2 The λsec Language . 57
4.3 Tail-calling . 60
4.4 An Abstract Machine for λsec 61
4.5 An Alternative Implementation 64
4.6 Space Consumption . 68
4.7 An implementation using Continuation Marks 72
4.8 The Richer Models of Java and .Net 72
4.9 Related Work . 73

5 Conclusion 75
5.1 Results . 75
5.2 Future Directions . 76

vii

viii CONTENTS

A Stepper Appendices 77
A.1 Annotation and Reconstruction Definitions 77
A.2 Evaluator Fragments . 83

B Stack Inspection Appendices 89
B.1 Equivalence of Fournet and Gordon’s evaluator and the one pre-

sented herein . 89

C Aspect-Oriented Programming using Continuation Marks 93
C.1 Aspect-Oriented Programming 93
C.2 Implementing AOP . 95
C.3 CFlow and Tail-Calling . 96

Bibliography 97

List of Figures

2.1 A first example using continuation marks 5
2.2 An example using continuation marks with different keys 5
2.3 A hierarchy of graphical classes . 7
2.4 Marks in tail position . 8
2.5 The relationship between continuation-marks and tail-recursion . . 9
2.6 The Annotation for a Lambda in Trace 11
2.7 The expansion of parameterize 13
2.8 The macro that expands with-handlers 15

3.1 Syntax . 20
3.2 Machine Definitions . 21
3.3 Expression Reductions . 22
3.4 Value Reductions . 23
3.5 The Stepper Architecture . 25
3.6 Annotation Functions . 26
3.7 Configuration Annotation Functions 27
3.8 Reconstruction Functions . 29
3.9 Debug Value Template . 30
3.10 The Simulation Lemma . 31
3.11 Steps taken in reduction of if to test position 36
3.12 Steps taken in reduction of cons1 continuation 37
3.13 Steps taken in reduction of wcm continuation 38
3.14 Steps taken in reduction of if continuation leading to an error . . . 40
3.15 Steps taken in reduction of cons2 continuation 41
3.16 Steps taken in reduction of car continuation leading to an error . . 42
3.17 Steps taken in reduction of empty continuation 43
3.18 Steps taken in reduction of empty continuation with no further def-

initions . 44
3.19 Steps taken in reduction of loaded annotated definitions 45
3.20 The correspondence between steps taken and steps emitted 47
3.21 Transition Categories . 47

4.1 The FG Machine . 62
4.2 Computing permissions as a finite state automaton 65
4.3 The CM Machine . 66

ix

x List of Figures

C.1 A simple piece of advice . 94
C.2 Capturing context information using continuation marks 95

Chapter 1

Introduction

Debugging tools and certain language extensions need to observe and change
programs as they run. Steppers, debuggers, and profilers all gather information
about running programs. Stack inspection extracts runtime data to verify
security properties. Aspect-oriented-programming uses dynamic context to
decide which code to evaluate.

Each of these needs to inspect control information. The traditional solution
in each case is to “hard-wire” low-level access to the inner machinery of the
evaluator. As a result of this choice, these tools are fragile and often difficult to
port. This architecture also makes it extremely difficult to specify the meaning
of these tools or language features in a high-level way.

Our thesis is that this Faustian compromise is unnecessary. We can give
these tools the information they need through a narrow and portable interface
without binding them to a particular set of machine details. Our dissertation
supports this thesis with the introduction of continuation marks, a language
feature that allows programs to observe control information without exposing
details of the evaluator’s implementation, and a demonstration of their power.

Using continuation marks, tools such as debuggers and profilers may be
designed at the level of the language itself, rather than as approximate trans-
lations from exposed machine state to configurations of a higher-level source
language. Furthermore, language features such as stack inspection and aspect-
oriented programming may be specified as transformations from a source lan-
guage with these features to a simpler language with just continuation-marks.
In essence, we show that they may be specified as “macros,” rather than lan-
guage features.

We have described the meaning of continuation marks by adding them to a
reduction semantics and also to a simple register machine. The register machine
we use is quite general, and therefore we believe that continuation marks may
be added to a wide range of existing languages, including both Java and C#.
Moreover, we believe that adding continuation marks to C# may allow us to
lift the current restriction that tail-calls cannot be handled properly in the
presence of security tracking.

1

2 CHAPTER 1. INTRODUCTION

This dissertation consists of five chapters, including the introduction. The
second chapter describes continuation marks; their syntax, their semantics,
and also the pragmatics of implementing them in a working evaluator for the
Scheme programming language. The third chapter builds upon the stated
semantics to show how a stepper may be specified and implemented as a source-
to-source transformation for programs coupled with a runtime reconstructor.
The fourth chapter illustrates how stack inspection may be implemented using
continuation marks. A fifth chapter concludes the dissertation.

Chapter 2

Continuation Marks

This chapter introduces continuation marks. It begins by providing an intu-
ition, both for the reasons that motivated their creation and for their actual
behavior. The next section explains the importance of tail-calling language
evaluators. The third section details the implementation of continuation marks
that appears in MzScheme, and shows how they are used to accomplish various
tasks.

2.1 Intuition

Continuation marks provide a means to observe control behavior. More specif-
ically, they allow the innermost part of the control context—the evaluation of
a method or procedure, for instance—to obtain information about what other
contexts are currently active. To put it another way, they allow a program to
inspect its own call stack.

However, continuation marks are also designed not to reveal any informa-
tion not available to those contexts themselves. To take one example, contin-
uation marks should not expose the way in which the evaluator lays out the
activation record.

More subtly, continuation marks should not make it possible to observe
control information that is a consequence of an evaluator implementation or a
subsequent code rewriting. For instance, a program should not be able to use
continuation marks to count the total number of frames on the stack, as this
would allow the program to observe certain optimizations—thereby rendering
them unsound.

Continuation marks strike a balance between these two goals by limiting the
possible observations to values already available to the program, and by linking
the visibility and duration of these values to notions of language definition,
rather than to compiler representations.

In any abstract machine, a continuation consists of a sequence of frames.
Continuation marks provide a means to label these frames with program values,
permitting a run-time observation of the dynamic program state. A language

3

4 CHAPTER 2. CONTINUATION MARKS

with continuation marks includes two new operations; w-c-m, short for with-
continuation-mark, and c-c-m, short for current-continuation-marks.
The first places a mark on the most recent frame, and the second retrieves the
marks associated with all frames currently on the stack.

Continuation marks are intended as a means of instrumenting programs
without changing their behavior. If the program being instrumented—henceforth
the source program—uses continuation marks itself, some mechanism is needed
to prevent the later marks from interfering with the earlier ones. Marks there-
fore are associated with keys, and marks associated with different keys are
mutually transparent.

This dissertation describes a number of different models for languages that
include continuation marks. Each one is tailored for a different purpose, and
each one contains a slightly different definition of continuation marks. The
following two definitions, taken from chapter 3, present the intuition behind
continuation marks clearly and concisely.

(w-c-m key mark-expr body-expr) : key is chosen from a fixed but infinite
set of keys. The mark-expr and body-expr are arbitrary expressions. The
mark-expr evaluates to a mark-value, which is then associated with the
given key in the continuation’s innermost (that is, most recently added)
frame. If the current top frame already has a value associated with this
key, the new value replaces it. Finally, body-expr is evaluated. Its value
becomes the result of the entire w-c-m expression.

(c-c-m key . . .) : This expression collects values associated with the given
set of keys by traversing the frames in the continuation from innermost
to outermost. Any frame whose mark table contains one or more of the
named keys results in an association list containing (quoted) keys and
values. Frames without any of the named keys are entirely unrepresented
in the result of c-c-m.

Abstract machines vary in the granularity of their continuation frames.
Models such as Landin’s SECD machine have coarse-grained continuation frames,
where a frame captures the state of a procedure call’s progress, including a list
of remaining instructions and a stack of intermediate results. The continuation
(or “dump”, to use Landin’s term) is extended when a procedure call occurs.
Other models, such as Felleisen’s CEK machine, use finer-grained continuation
frames that capture the information necessary to evaluate a single expression.
Every expression whose computation would require an “intermediate value”
in the SECD machine generates an additional continuation frame in the CEK
machine. This latter model vastly simplifies the specification of continuation
marks, and we shall define continuation-mark primitives exclusively with re-
spect to these models.

Figure 2.1 shows a simple example using continuation marks. In this ex-
ample, a simple if expression has been instrumented with two mark-placing

2.1. INTUITION 5

(w-c-m k ’around-if
(if (w-c-m k ’around-test

(begin (display (c-c-m k))
false)

3
4)))

7→
(((k ’around-test)) ((k ’around-if)))

4

Figure 2.1: A first example using continuation marks

operations—one around the whole if , and one around the if ’s test. In addi-
tion, the test expression (in this case, simply false) is wrapped in a begin
that displays all marks with the key k that are associated with the continua-
tion stack. Since the context of the test expression is different from that of the
if expression, both marks remain.

(w-c-m k ’around-if
(w-c-m k2 ’another-around

(if (w-c-m k ’around-test
(begin (display (c-c-m k2))

false)
3
4)))

7→
(((k2 ’another-around)))

4

Figure 2.2: An example using continuation marks with different keys

Figure 2.2 shows a similar example that uses two different keys. Since the
newly added w-c-m uses a different key (k2) than the other w-c-ms, its marks
and the existing marks are mutually transparent. In particular, the c-c-m call
shows only one frame, because only one mark with this key was placed on the
continuation.

The example and description given thus far suggest a simple implementa-
tion of continuation marks. In particular, it would seem that a program with
continuation marks could be rewritten into one without them by wrapping ev-
ery expression with a “push” to a stack kept on the side, and a corresponding
“pop” of the mark stack on every expression’s return. Aside from the appalling
expense of such an approach, there are two key reasons that this approach is
infeasible: first, the importance of tail-calling in language implementations,
and second, the importance of library code.

6 CHAPTER 2. CONTINUATION MARKS

2.2 The Importance of Tail-Calling

The Past

There are many models for the behavior of computers in evaluating programs.
Some of them, like Plotkin’s βv variant of the lambda-calculus, model procedure
application using a substitution of the procedure’s body for the application.
Others, like Landin’s SECD machine, model procedure application using a
dump that grows on every procedure call.

One difference between these two models arises when, for instance, a pro-
cedure’s f ’s body is simply an application of another function g. Using the
βv rule guarantees that the body of f is replaced by the body of g, and the
resulting term is no larger than it would have been had the original call been
to g. In the SECD machine, on the other hand, the call to f and f ’s call to
g each generate a stack frame, and the computation of g now proceeds in an
environment where the stack is larger than it would have been in a direct call
to g.

This “extra frame” in the SECD machine does not affect the result of the
computation—the result of the call to g is returned unchanged to the caller
of f—but the extra frame consumes memory, and a simple loop of such direct
calls may exhaust memory.

This behavior of the SECD machine, and more broadly of many compilers
and evaluators, is principally a consequence of the early evolution of comput-
ers and computer languages; procedure calls, and particularly recursive pro-
cedure calls, were added to many computer languages long after constructs
like branches, jumps, and assignment. They were thought to be expensive,
inefficient, and esoteric.

Guy Steele [43] outlined this history and disrupted the canard of expensive
procedure calls, showing how inefficient procedure call mechanisms could be
replaced with simple “JUMP” instructions, making the space complexity of
recursive procedures equivalent to that of any other looping construct. This
work applies with little change to the evaluators of the present day. The key is
to ensure that calls made when “no work remains to be done” in the current
procedure do not add a frame to the stack. We use the name “tail-calling” or
“properly tail-recursive” for evaluators that have this property.

The Present

In the past twenty years, inductively defined data structures (lists, trees, and
the like) have become increasingly prevalent. Felleisen et al. [14]—among
others—observe that inductive data definitions give rise to inductively defined
operations on such data (sorting, searching, etc.), and that these correspond
directly to recursive functions. This approach narrows the distance between
specification and implementation, and greatly simplifies the task of teaching
students how to design operations on these data types.

2.2. THE IMPORTANCE OF TAIL-CALLING 7

UIElement

boolean okay()
...

�
�

A
A

panel

boolean okay()
...
UIElement subPanelA
UIElement subPanelB

radioButtons

boolean okay()
...
UIElement title
...

. . .

Figure 2.3: A hierarchy of graphical classes

Another push in this direction has come from object-oriented programming.
In a pure object-oriented model, the code that operates on data is contained in
methods associated with the classes that make up the data. That is, a compu-
tation over a piece of data composed of elements of two classes will naturally
result in two method bodies, one in each class. If these classes’ instances refer
to each other, then the methods defined for the data will naturally refer to the
corresponding method in the other class.

For example, consider a hierarchy of GUI elements. Figure 2.3 shows a
part of what such a hierarchy might look like. Each element of the hierarchy
has an okay() method that checks recursively to make sure that this element
and all enclosed elements are well-formed. The natural implementation of
the okay() method in each class would involve recursive calls to the okay()
methods of the contained objects. Since many of these objects will contain
one or two sub-elements, many of the recursive calls will be tail calls—that is,
calls with no work remaining to be done. Unfortunately, the lack of tail-calling
in Java makes this pattern of recursive calls needlessly wasteful of memory,
leaving memory-conscious programmers with no choice but to maintain a stack
explicitly in order to translate this traversal into a loop. Note that a “Visitor”-
style traversal suffers from exactly the same problem.

Finally, a key early motivation for the creation of object-oriented languages
is the elimination of mutation.

Though OOP came from many motivations, two were central.
... [T]he small scale one was to find a more flexible version of
assignment, and then to try to eliminate it altogether.

— Alan Kay, History of Smalltalk (1993)

Unfortunately, the absence of tail-calling in Java means that programmers must
code traversals of self-referential data (trees, lists, stacks, etc.) using looping

8 CHAPTER 2. CONTINUATION MARKS

constructs and mutation. That is, a tail-calling language would allow a purer
OO-style traversal with the added benefit of eliminating mutation.

Dismayingly, the majority of compilers and evaluators—even for object-
oriented languages—still lack the simple change that would make the space
consumed by recursive procedures equivalent to that consumed by a loop.

Ironically, the very compilers that fail to provide tail-calling to the programs
they compile now use intermediate representations that are derived from trans-
formations such as CPS [12], ANF [20], and SSA [29]. These transformations
are based on the premise that code sequences are in essence nested tail-calling
procedures; unfortunately, this insight has not risen to the surface of the lan-
guage, allowing programmers to use the lightweight calling convention that
their optimizing compilers do.

The Future

Awareness of the need for tail-calling compilers and interpreters is growing.
Some languages, such as Scheme [28], have included a tail-calling requirement
for many years. That is, all “correct” implementations of Scheme must evaluate
certain divergent programs without unbounded space growth.

More recently, Microsoft’s .NET framework [34] has begun to address the
need for tail-calling languages by providing a tail-calling primitive. Unfortu-
nately, the use of the tail-calling primitive comes with restrictions; in particular,
the use of the native stack inspection mechanism disables the tail-calling be-
havior. In fact, I and my co-authors demonstrate a possible alternative to this
restriction which is described in chapter 4. Finally, this tail-calling primitive
turns out to be prohibitively slower than its traditional push-and-pop alterna-
tive, due apparently to a runtime check for stack-inspection information.

The Continuation Marks

The importance of tail-calling highlights the need for continuation marks. Since
continuation marks observe the behavior of the evaluator rather than anticipat-
ing it, the continuation mark architecture can be applied without foreknowledge
of the stack’s behavior.

(w-c-m if-example ’outer
(if true

(w-c-m if-example ’inner
(c-c-m ’if-example))

13))
7−→→
(((if-example inner)))

Figure 2.4: Marks in tail position

2.3. AN IMPLEMENTATION IN SCHEME 9

(define fact
(lambda (n)

(if (= n 0)
(begin

(output stdout (c-c-m fact))
1)

(w-c-m fact n
(∗ n (fact (− n 1)))))))

(define result (fact 3))

(define fact-tr
(lambda (n a)

(if (= n 0)
(begin

(output stdout (c-c-m fact))
a)

(w-c-m fact n
(fact-tr (− n 1) (∗ n a))))))

(define result (fact-tr 3 1))
7−→→ 7−→→
(((fact 1)) ((fact 2)) ((fact 3))) (((fact 1)))

6 6

Figure 2.5: The relationship between continuation-marks and tail-recursion

To see this, we consider several simple examples using continuation marks
in Scheme. In figure 2.4, a w-c-m is wrapped around the if , and another one
around the enclosed then clause. The then clause (and also the else clause)
are in tail position with respect to the if , because the then clause replaces
the whole if when the test evaluates to true. That is, the context of the if
will be the same as the context of the then clause. As a result, the inner
mark and the outer mark are both applied to the same context, and the inner
mark overwrites the outer one. This example differs from the earlier example
of figure 2.1 in that the earlier example showed a wrapping around the test
clause, which is not in tail position.

The two programs in fig. 2.5 illustrate how a programmer might instrument
a factorial function with these constructs. The boxed text represents the pro-
gram’s output. Both definitions implement a factorial function that marks its
continuation at the recursive call site and reports the continuation-mark list
before returning. The one in the left column is properly recursive, the one on
the right is tail-recursive. The values of V are the outputs that applications of
their respective functions produce. For the properly recursive program on the
left, the value shows that the continuation contains three mark frames. For
the tail-recursive variant, only one continuation mark remains; the others have
been overwritten during the evaluation.

2.3 An Implementation in Scheme

Matthew Flatt’s MzScheme is a bytecode interpreter written in C. It maintains
three separate stacks; the standard C call stack, a scheme stack for activation
variables and application arguments, and a third one for continuation marks.

When a mark is set using w-c-m, MzScheme scans the frames of the
continuation-mark stack associated with the topmost activation record to find
existing marks with this key. If one exists, its binding is mutated. Otherwise,
a new frame is added to this stack. MzScheme’s implementation for w-c-m

10 CHAPTER 2. CONTINUATION MARKS

takes time linear in the number of keys used for marks on the topmost frame.
This has not been a bottleneck in practice, because programs typically use a
small number of keys. Alternative implementations could reduce the asymp-
totic bound, but would likely result in higher average times, due to increased
overhead. Since this stack is copied when a continuation is captured, a muta-
tion is not visible to other references to this continuation.

When the primitive procedure c-c-m is called, MzScheme scans the full
stack for instances of the given key or keys and collects the results in a list.
This operation is linear in the size of the continuation-mark stack. MzScheme
also includes a continuation-mark-set-first primitive that identifies only the
topmost mark associated with a given key. By caching values, this operation
can in principle be implemented in amortized-constant time. The former is
typically useful in operations like breakpoints where time is not an issue, where
the latter is useful in more time-sensitive applications, like checking permissions
or looking up exception handlers.

MzScheme uses continuation marks to implement a wide variety of tools and
language features. These include tools such as the stepper, the errortrace facil-
ity, the profiler, a trace engine, and a prototype debugger. Continuation marks
also form the basis for language features such as parameters and exceptions.

The Stepper

Chapter 3 explores the stepper in depth. Continuation marks are the technol-
ogy that enables the implementation of the stepper with respect to a high-level
model.

Errortrace

DrScheme provides an errortrace facility which is moderately fast and shows
source-position backtraces when errors occur. That is, an uncaught exception
comes with a set of continuation marks captured when the exception occurred.
The user has the option of displaying these as a list of source positions (along
with the actual text at these positions), where each element in the list corre-
sponds to a continuation frame. An alternative display links the source posi-
tions of the continuation frames with a chain of arrows, superimposed upon
the source text in the editor window.

The annotation associated with errortrace is simple. Each expression is
wrapped in a w-c-m that associates the source position with an errortrace key.
If expression B is tail with respect to expression A, then the mark placed by
the wrapper around B will replace the one associated with A. This guarantees
that only the source positions associated with current continuation frames will
be present in the current set of marks.

2.3. AN IMPLEMENTATION IN SCHEME 11

Profiler

DrScheme provides a profiler which reports the time spent in each procedure.
Additionally, the profiler can supply information about call paths; this infor-
mation is collected through an annotation that uses continuation marks to
capture calling information.

In fact, the profiler re-uses the Errortrace annotator. Since the two tools use
distinct keys for their continuation marks, these two annotations are mutually
transparent.

Trace

. . .
[lambda-clause-abstraction
(lambda (clause)

(kernel-syntax-case clause #f
[(arglist . bodies)
(let-values
([(arglist-proper improper?) (arglist-flatten #’arglist)])
(if name-guess

#‘(arglist
(with-continuation-mark
#,calltrace-key
’unimportant
(begin (let ([call-depth (length (continuation-mark-set→list

(current-continuation-marks)
#,calltrace-key))])

(#,print-call-trace
(quote-syntax #,name-guess)
#,(syntax-original? name-guess)
(#,stx-protector-stx #,(make-stx-protector stx))
(list #,@arglist-proper)
#,improper?
call-depth))

#,@(recur-on-sequence (syntax->list #’bodies)))))
#‘(arglist #,@(recur-on-sequence (syntax->list #’bodies)))))]

[else
(error ’expr-syntax-object-iterator

"unexpected (case-)lambda clause: ˜a"
(syntax-object->datum stx))]))]

. . .

Figure 2.6: The Annotation for a Lambda in Trace

MzScheme includes a very simple trace utility that instruments each pro-
cedure with code that displays its arguments. Additionally, each procedure’s

12 CHAPTER 2. CONTINUATION MARKS

body is wrapped in a constant with-continuation-mark; this allows the trace
code to determine its call depth, and indent the output accordingly.

This tiny utility is nevertheless a clear illustration of the value of contin-
uation marks. Keeping track of this information without continuation marks
would require changing the calling convention, exposing the format of the stack,
or the use of fluids—which are in fact built using continuation marks.

Figure 2.6 shows code taken directly from the definition of the annota-
tion used for the Trace utility. The function lambda-clause-abstraction accepts
MzScheme syntax representing a lambda clause (without the lambda itself)
and wraps its body in a with-continuation-mark (abbreviated in this chap-
ter as w-c-m). The depth of the recursion is computed at runtime by taking the
length of the list of continuation marks revealed by current-continuation-
marks (abbreviated in this chapter as c-c-m).

Debugger

DrScheme has a prototype debugger, called MzTake, built upon yet another
annotation using continuation marks. MzTake’s annotation is similar to Error-
trace, but in addition captures the values bound to variables.

Parameters

Often, programs are parameterized by certain global attributes—an output
port, for instance, or a current directory. This is particularly true of languages
used for scripting, where interaction with the file system or other program
invocations is common. Moreover, these attributes are typically assigned in
a dynamic-extent style, where the value of an attribute is valid during the
dynamic extent of a call, rather than behaving like a lexically scoped variable.

The traditional implementation of these attributes is simply to have a mu-
table table of global variables. For instance, the UNIX execve() call includes
an envp parameter that indicates what values for these environment variables
should be given to a child process. Each process then has its own copy of the
environment variables, which it may manage as it wishes.

Languages like Scheme feature a more sophisticated and fluid interaction
between computations. First, a program may consist of many threads, each
with its own values for these attributes. Beyond this, Scheme’s continuation
mechanisms create additional opportunities for confusion, where a computation
may migrate from one thread to another. A model in which programmers have
to manually anticipate all possible continuation and thread operations in order
to properly update the dynamic values of these attributes would be difficult
for small programs and unmanageable at large scales.

The Scheme language defines a dynamic-wind primitives that is designed
to address this need [28]. The dynamic-wind form allows a program to spec-
ify actions to be taken whenever a block begins or is entered by invoking a
continuation, and likewise to specify actions to be taken whenever a block ends
or is exited via continuation. Fluid bindings are built on top of dynamic-wind,

2.3. AN IMPLEMENTATION IN SCHEME 13

by specifying a swap between the existing and a “saved” binding on both en-
try and exit from the specified scope. These language forms are frequently
sufficient, but suffer from at least three problems.

First, they require additional computation. That is, when a continuation
is invoked, the evaluator must check to see what after actions are currently
pending. Likewise, entering a continuation requires a check to see what be-
fore actions are required. This is particularly onerous for systems that use
continuations as the basis for thread-switching.

Secondly, the body of a dynamic-wind is not in tail position with re-
spect to the dynamic-wind itself. This means that a loop whose body
is a dynamic-wind—implementing an exception-handler, for instance—will
rapidly exhaust memory.

Third, the existing fluid-let mechanism is incompatible with context switches
other than continuation jumps. That is, since the unwinding of a fluid requires
the execution of code, a simple halt to a running thread will not typically cause
the execution of the unwinding code.

What is needed instead is a passive association between continuations and
the bindings of these attributes, and this is precisely what continuation-marks
provide. Designed by Matthew Flatt and Michael Sperber, MzScheme’s pa-
rameterize form associates a new binding with the current continuation, using
a continuation-mark. The ’current binding’ associated with a given parame-
ter is therefore obtained by inspecting the current continuation marks. This
definition, more declarative in style, ensures that the maintenance of the fluid
invariants—that is, that a given binding is visible only in a certain region of
code—is enforced without need of explicit mutation.

(parameterize ([a 13])
(+ 3 4))

expands to

(with-continuation-mark parameterization-key
(extend-parameterization
(continuation-mark-set-first #f parameterization-key)
a
13)

(+ 3 4))

Figure 2.7: The expansion of parameterize

Figure 2.7 shows the expansion of a simple parameterize expression in
MzScheme. The result is a with-continuation-mark that associates the pa-
rameterization key with an extended parameterization. The parameterization-
key is known only by the syntax system, to ensure that marks associated with
parameters are orthogonal to all prior annotations. The primitive procedure

14 CHAPTER 2. CONTINUATION MARKS

continuation-mark-set-first is an optimized version of current-continuation-
marks that extracts only the most recent continuation mark with a given key.
The extend-parameterization extends this parameterization by mapping the
given parameter to a new binding.

When a parameter’s value is needed, MzScheme uses continuation-mark-set-
first to obtain the most recent parameterization, and looks up the parameter’s
value in this table.

Exceptions

Exception-handlers are much like parameters. Placing an exception handler
associates pairs of procedures with the continuation (each one a predicate and
a handler). This exception handler should have the dynamic extent of its body,
and should not incur additional cost on entry to and exit from the block it con-
trols. It is therefore natural to implement exception-handling using parameters,
and therefore using continuation marks.

Figure 2.8 shows the macro definition for with-handlers defined by Matthew
Flatt for MzScheme. The core of the expansion is the parameterize that
installs the new procedure as the current-exception-handler . Note also that
the pair of with-continuation-mark expressions using the break-enabled key
essentially open a “gap” in the continuation where breaks are disabled, so that
a procedure invoking the escape continuation k is evaluated in an environment
where breaks are disabled.

2.3. AN IMPLEMENTATION IN SCHEME 15

(quasisyntax/loc stx
(let ([l (list (cons pred handler) . . .)]

[body (lambda () expr1 expr . . .)])
;; Capture current break parameterization, so we can use it to
;; evaluate the body
(let ([bpz (continuation-mark-set-first #f break-enabled-key)])

;; Disable breaks here, so that when the exception handler jumps
;; to run a handler, breaks are disabled for the handler
(with-continuation-mark
break-enabled-key
(make-thread-cell #f)
((call/ec

(lambda (k)
;; Restore the captured break parameterization for
;; evaluating the ‘with-handlers’ body. In this
;; special case, no check for breaks is needed,
;; because bpz is quickly restored past call/ec.
;; Thus, ‘with-handlers’ can evaluate its body in
;; tail position.
(with-continuation-mark
break-enabled-key
bpz
(parameterize
([current-exception-handler

(lambda (e)
(k
(lambda ()

(let loop ([l l])
(cond
[(null? l)
(raise e)]
[((caar l) e)
#,(if disable-break?

#’(begin0
((cdar l) e)
(with-continuation-mark
break-enabled-key
bpz
(check-for-break)))

#’(with-continuation-mark
break-enabled-key
bpz
(begin

(check-for-break)
((cdar l) e))))]

[else
(loop (cdr l))])))))])

(call-with-values body
(lambda args (lambda () (apply values args)))))))))))))

Figure 2.8: The macro that expands with-handlers

Chapter 3

A Stepper built with
Continuation Marks

The earliest motivation for the introduction of continuation marks was the need
for a Scheme stepper. This chapter provides a detailed model of a language
with continuation marks, the definition of a stepper as an annotation from
source programs to instrumented ones, and a proof that the resulting program
acts as a correct stepper, showing the same evaluation steps that the original
program produces. 1

3.1 A Stepper for Scheme

Our DrScheme programming environment [19] provides an algebraic stepper
for Scheme. It explains a program’s execution as a sequence of reduction steps
based on the ordinary laws of algebra for the functional core [2, 37] and more
general algebraic laws for the rest of the language [17]. An algebraic stepper
is particularly helpful for teaching: students often have trouble with the key
concepts of recursion, and seeing the evaluation of the program in a step-
by-step fashion can enlighten them. Selective uses can also provide excellent
information for complex debugging situations.

Our stepper implementation must satisfy several requirements. First, it
must faithfully match the evaluator. That is, running the program in the step-
per must produce the same result as running the compiled program. Second, it
must be portable and high-level. That is, it should not be tied to a particular
machine architecture, or even to a particular implementation of its language.

One possible strategy involves formulating the language being stepped as
a set of reduction rules, and coding the stepper as a translation of those rules
into a program. Unfortunately, this is immensely labor-intensive, requiring a
second implementation of the language evaluator. Even if the stepper succeeds
in duplicating the meaning of the language, subsequent changes to the language

1This chapter was published in a much earlier form at the European Symposium on
Programming [9].

17

18 CHAPTER 3. A STEPPER BUILT WITH CONTINUATION MARKS

itself will almost certainly find their way into the principal, non-stepping eval-
uator/compiler before the stepper is updated. The result is typically a slow
divergence between the semantics represented by the compiler and the seman-
tics represented by the stepper.

At the other end of the spectrum, systems like gdb allow a direct obser-
vation of the evaluation performed by the compiled program. In this case,
the semantics of the stepper is likely to match the semantics of the compiled
program closely. Unfortunately, linking a stepper’s definition to knowledge
of the evaluator’s internals is expensive, fragile, and non-portable; every new
back-end must include a corresponding piece of the stepper, and any change
to the evaluator’s internals must be accompanied by a change to the stepper.
Furthermore, it make a proof of correctness essentially impossible.

In our stepper, we balance these requirements by using continuation marks.
The stepper transforms a source program into one that uses continuation marks
to store information about its current source position and bindings. This an-
notated program also gathers all current continuation marks at each step, and
uses this information to display the state of execution. Since the stepper is de-
fined as a source-to-source translation, the correctness of the debugger depends
only on the correctness of the evaluator with respect to its stated semantics,
and not on low-level invariants of the evaluator’s internal structures. Since the
action of the debugger is independent of the evaluator’s representation of run-
time data, the debugger’s proof of correctness is similarly independent. This
makes a proof of correctness feasible, and indeed straightforward.

We choose a single language as both source and target of the debugging
transformation; that is, the program being debugged may itself use contin-
uation marks. This means, among other things, that multiple “layers” of
annotation—a profiler and a debugger, for instance—can coexist.

In the next section, we present a model of a language with continuation
marks, and define the annotation and reconstruction functions that make up
the stepper. Section 3.4 shows that our stepper satisfies a correctness criterion;
in particular, that the steps emitted by the annotated program correspond to
those of the original program’s evaluation. Section 3.6 discusses some of the
obstacles we overcame in the translation of the model to a concrete implemen-
tation. Finally, we consider some of the related work.

3.2 The Continuation Mark Architecture

A traditional debugger interrupts the evaluation of a program to provide infor-
mation about the state of a program’s evaluation, resumes the computation,
stops again, and so on. The generated sequence of evaluation states induces a
semantics. A debugger is adequate if this induced semantics represents steps
occurring in the defined semantics of the language. An adequate debugger is
called a stepper if there is a bijection between the two sequences of steps.

This comparison is only possible for a language with a semantics that models
evaluation as a sequence of steps; that is, a small-step semantics. We choose

3.2. THE CONTINUATION MARK ARCHITECTURE 19

the CEKD machine because this model closely matches the implementation
strategy of current evaluators and allows a translation to virtual machines
such as the JVM [33] and the .NET semantics [24]. In the CEKD machine, an
evaluation consists of a sequence of Expression and Value configurations. Each
Expression configuration is a 4-tuple of values for machine registers: C, E, K,
and D. The first specifies the current expression and is akin to the program
counter in other accounts of machine-level computation. The second is an
environment, which maps the free variables of the current expression to values.
The third is a continuation, or control stack, whose records indicate what is
to be done with the computed value. The fourth stores the values associated
with top-level variables. Value configurations are represented as 3-tuples—V ,
K, and D—where the current expression and environment are replaced by a
value.

To simulate the steps taken by such a machine, a stepper must be able to
reproduce the content of these four machine registers. The stepper can cap-
ture most of the machine state directly. More precisely, the current expression
(C), the content of the current environment (E), and the values defined for
the top-level bindings (D) may all be exposed by a systematic program instru-
mentation (or annotation) with suitable print-style expressions or calls to a
stepper coroutine.

The only significant obstacle is the reconstruction of the control stack, K.
To address this, most debuggers are granted privileged, extra-lingual access to
the machine state. This privilege generally involves exposing the format of the
compiler’s stack representations and impedes later changes to these protocols.
DrScheme avoids this trap through the use of continuation marks. Rather than
building a debugger that can see every detail of the compiler’s data structures,
we end up with a debugger that can see only the values stored earlier by the
annotated program itself.

Also, the continuation mark mechanism does not allow a program to inspect
the control stack associated with uninstrumented code, and therefore does not
compromise security. That is, the stepper sees foreign program components as
“black boxes”, and does not expose details of their operation.

The Model

The language of our model, λcm, is based on the λv-calculus, augmented with
the language forms needed to express the stepper for a functional language
with definitions. Its syntax appears in figure 3.1. It includes the w-c-m and
c-c-m constructs, and the the output expression models the output of values
on a set of ports. List primitives are included to simplify the presentation
of the stepper’s model. Since the (list . . .) form is syntactic shorthand for a
nested series of (cons . . .) expressions, list does not appear in the machine
definitions that follow. Similarly, a let form is used as an abbreviation for a
simple application.

A program in λcm consists of a nonempty sequence of top-level definitions.
Variable references are statically partitioned into top-level and lexical refer-

20 CHAPTER 3. A STEPPER BUILT WITH CONTINUATION MARKS

P = (define f C) (define f C) . . .

C ∈ Exprs = n | ’x | p | (C C . . .) | (lambda (x . . .) C) | x | f
| (let (x C1) C2) ;; syntax for ((lambda (x) C2) C1)

| (cons C C) | null

| (list C . . .) ;; syntax for (cons C (cons . . . null))

| (car C) | (cdr C)

| true | false | (if C C C)

| (w-c-m k C C) | (c-c-m k . . .)

| (output j C)

x ∈ Identifiers(lexical)

f ∈ Identifiers(top-level)

j ∈ Ports

k ∈ Keys

n ∈ Numbers

p ∈ Primops

Figure 3.1: Syntax

ences. We use the metavariable f to represent a top-level variable, and the
metavariable x to refer to a lexical one. In our typeless setting, forward refer-
ences to top-level variables present no problems, except that the evaluation of
a reference to a variable that has not yet been defined causes a run-time error.

The λcm language includes Lisp-style symbols, written as ’x. The set of
symbols is taken to include (at least) the names of the lexical variables, the
names of the top-level variables, the names of the primitive operators, the
continuation mark keys, and the names of the output ports.

We present the semantics of the λcm language using the CEKD register
machine. The data definitions for this machine appear in figure 3.2. Config-
urations in this machine take on one of four forms: the Expression and Value
configurations represent a running machine, and the Error and Finished config-
urations represent a halted one. In the Expression configuration, the machine is
searching for an expression to reduce. In the Value configuration, the machine
has a value that must be supplied to a control context. The Error configuration
arises as the result of a failed run-time check, and the Finished configuration
occurs upon successful completion of evaluation.

More precisely, the Expression configuration contains an expression, C, an
environment E in which to evaluate that expression, a continuation pair con-
taining a continuation K and a mark table M , and a top-level environment
D. The Value configuration contains a value V , a continuation pair 〈K, M〉,
and a top-level environment D. The lexical environment E is discarded, as it

3.2. THE CONTINUATION MARK ARCHITECTURE 21

S ∈ Configs = 〈C, E, 〈K, M〉, D〉 (expression configurations)

| 〈V, 〈K, M〉, D〉 (value configurations)

| 〈E〉 (finished)

| 〈error〉
V ∈ Values = 〈num : n〉 | 〈str : s〉 | 〈sym : x〉 | 〈prim : p〉 | 〈clo : 〈x, . . .〉, C, E〉

| 〈pair : V, V 〉 | 〈null〉 | 〈true〉 | 〈false〉
E ∈ Environments = Identifier ⇀ Value

K ∈ Continuations = 〈app : 〈V, . . .〉, 〈C, . . .〉, E, 〈K, M〉〉
| 〈cons1 : C, E, 〈K, M〉〉 | 〈cons2 : V, 〈K, M〉〉
| 〈car : 〈K, M〉〉 | 〈cdr : 〈K, M〉〉
| 〈if : C, C, E, 〈K, M〉〉
| 〈wcm : k, C, E, 〈K, M〉〉
| 〈out : j, 〈K, M〉〉
| 〈〉

M ∈ Marks = Identifier ⇀ Value

D ∈ Topenvs = 〈E, f, 〈〈f, C〉, . . .〉〉
δ ∈ Primop× 〈Value, . . .〉 ⇀ Value

Figure 3.2: Machine Definitions

cannot affect the evaluation of the program. the Finished configuration con-
tains the top-level environment that is the result of evaluating all the program’s
definitions, and the Error configuration contains nothing.

Figures 3.3 and 3.4 show the transition rules for expression configurations
and value configurations, respectively. The majority of these are conventional.
Subexpressions of applications and pair constructors are evaluated left-to-right.
Primitive applications are implemented using a partial function δ mapping
primitive names and tuples of values to values. Empty environments and mark
tables are written as ∅.

Transitions producing values—true, for instance—discard the mark table
associated with the top continuation frame, replacing it with ∅. This does not
change the behavior of the machine, because this mark table is guaranteed to be
removed (without being observed) during the following transition. Preserving
this mark table, then, would needlessly complicate the proof by introducing
information that is difficult to capture and does not affect the computation.
Eliminating this mark table does not affect the asymptotic memory behavior
of an implementation. 2

2Since all value configurations therefore contain empty mark tables, the left-hand-sides
of the value reductions all show an empty mark table.

22 CHAPTER 3. A STEPPER BUILT WITH CONTINUATION MARKS

〈n, E, 〈K, M〉, D〉 τ7→ 〈〈num : n〉, 〈K, ∅〉, D〉

〈’x, E, 〈K, M〉, D〉 τ7→ 〈〈sym : x〉, 〈K, ∅〉, D〉

〈p, E, 〈K, M〉, D〉 τ7→ 〈〈prim : p〉, 〈K, ∅〉, D〉

〈(C1 C2 . . .), E, 〈K, M〉, D〉 τ7→ 〈C1, E|fv(C1),

〈〈app : 〈〉, 〈C2, . . .〉, E|fv(C2,...), 〈K, M〉〉, ∅〉,
D〉

〈(lambda (x . . .) C), E, 〈K, M〉, D〉 τ7→ 〈〈clo : 〈x, . . .〉, C, E|fv(C)\{x...}〉, 〈K, ∅〉, D〉

〈x, E, 〈K, M〉, D〉 τ7→ 〈V, 〈K, ∅〉, D〉 where E(x) = V

〈f, E, 〈K, M〉, 〈E′, f1, 〈〈f2, C2〉, . . .〉〉〉
τ7→

8<:
〈V, 〈K, ∅〉, 〈E′, f1, 〈〈f2, C2〉, . . .〉〉〉

if E′(f) = V
〈error〉 otherwise

〈(cons C1 C2), E, 〈K, M〉, D〉 τ7→ 〈C1, E|fv(C1),

〈〈cons1 : C2, E|fv(C2), 〈K, M〉〉, ∅〉, D〉

〈null, E, 〈K, M〉, D〉 τ7→ 〈〈null〉, 〈K, ∅〉, D〉

〈(car C), E, 〈K, M〉, D〉 τ7→ 〈C, E|fv(C), 〈〈car : 〈K, M〉〉, ∅〉, D〉

〈(cdr C), E, 〈K, M〉, D〉 τ7→ 〈C, E|fv(C), 〈〈cdr : 〈K, M〉〉, ∅〉, D〉

〈true, E, 〈K, M〉, D〉 τ7→ 〈〈true〉, 〈K, ∅〉, D〉

〈false, E, 〈K, M〉, D〉 τ7→ 〈〈false〉, 〈K, ∅〉, D〉

〈(if C1 C2 C3), E, 〈K, M〉, D〉 τ7→ 〈C1, E|fv(C1),

〈〈if : C2, C3, E|fv(C2,C3), 〈K, M〉〉, ∅〉, D〉

〈(w-c-m k C1 C2), E, 〈K, M〉, D〉 τ7→ 〈C1, E, 〈〈wcm : k, C2, E|fv(C2), 〈K, M〉〉, ∅〉, D〉

〈(c-c-m k . . .), E, 〈K, M〉, D〉 τ7→ 〈V, 〈K, ∅〉, D〉 where V = π~k(〈K, M〉)

〈(output j C), E, 〈K, M〉, D〉 τ7→ 〈C, E|fv(C), 〈〈out : j, 〈K, M〉〉, ∅〉, D〉

where

π~k(〈K1, M1〉) = [φ~k(M) | M ∈ M1 . . . Mn and φ~k(M) 6= 〈null〉]

in which K1 = 〈. . . , 〈K2, M2〉〉
...

and Km = 〈. . . , 〈Km+1, Mm+1〉〉
...

up to Kn = 〈〉

that is:

〈〈〉

〈Kn−1

���� ��?
?

〈K2

�� ��?
??

〈K1

���� ��?
?

Mn〉

. . .

M2〉

M1〉

and

φ~k(M) = [(list ’k V)|k ∈ ~k and M(k) = V]

Figure 3.3: Expression Reductions

3.2. THE CONTINUATION MARK ARCHITECTURE 23

〈Vn, 〈〈app : 〈V1, . . . Vn−1〉, 〈C1, C2, . . .〉, E, 〈K, M〉〉, M0〉, D〉
τ7→

〈C1, E|fv(C1), 〈〈app : 〈V1, . . . , Vn〉, 〈C2, . . .〉, E|fv(C2,...), 〈K, M〉〉, ∅〉, D〉

〈Vn, 〈〈app : 〈V1, . . . , Vn−1〉, 〈〉,
E, 〈K, M〉〉, ∅〉, D〉

τ7→

8>>>>>><>>>>>>:

〈C, E′′|fv(C), 〈K, M〉, D〉
if V1 = 〈clo : 〈x1 . . . xn−1〉, C, E′〉
and E′′ = E′[x1 7→ V2] . . . [xn−1 7→ Vn]

〈V, 〈K, ∅〉, D〉 if V1 = 〈prim : p〉
and δ(p, 〈V2, . . . , Vn〉) = V

〈error〉 otherwise

〈V, 〈〈cons1 : C, E, 〈K, M〉〉, ∅〉, D〉 τ7→ 〈C, E|fv(C), 〈〈cons2 : V, 〈K, M〉〉, ∅〉, D〉

〈V2, 〈〈cons2 : V1, 〈K, M〉〉, ∅〉, D〉 τ7→ 〈〈pair : V1, V2〉, 〈K, ∅〉, D〉

〈V, 〈〈car : 〈K, M〉〉, ∅〉, D〉 τ7→

〈V1, 〈K, ∅〉, D〉 if V = 〈pair : V1, V2〉
〈error〉 otherwise

〈V, 〈〈cdr : 〈K, M〉〉, ∅〉, D〉 τ7→

〈V2, 〈K, ∅〉, D〉 if V = 〈pair : V1, V2〉
〈error〉 otherwise

〈V, 〈〈if : C1, C2, E, 〈K, M〉〉, ∅〉, D〉 τ7→

8<:
〈C1, E|fv(C1), 〈K, M〉, D〉 if V = 〈true〉
〈C2, E|fv(C2), 〈K, M〉, D〉 if V = 〈false〉
〈error〉 otherwise

〈V, 〈〈wcm : k, C, E, 〈K, M〉〉, ∅〉, D〉 τ7→ 〈C, E|fv(C), 〈K, M [k 7→ V]〉, D〉

〈V, 〈〈out : j, 〈K, M〉〉, ∅〉, D〉 〈j,V 〉7−→ 〈〈false〉, 〈K, ∅〉, D〉

〈V, 〈〈〉, ∅〉, 〈E, f, 〈〈f1, C1〉, . . .〉〉〉
τ7→

8<:
〈E[f 7→ V]〉 if 〈〈f1, C1〉, . . .〉 = 〈〉
〈C, ∅, 〈〉, 〈E[f 7→ V], f1, 〈〈f2, C2〉, ...〉〉〉

if 〈〈f1, C1〉, . . .〉 = 〈〈f1, C1〉, 〈f2, C2〉, . . .〉

Figure 3.4: Value Reductions

As described before, a w-c-m expression contains a statically chosen key k
and an expression C1 whose evaluated result is associated with k in the mark
table associated with the continuation. The machine then evaluates the body,
C2. This second evaluation is in tail position; the machine does not create a
new continuation frame in which to evaluate C2. For simplicity, the extension
of a mark table M is described using the familiar notation of environment ex-
tension. In an implementation, overwritten bindings are unreachable and may
be removed, preserving the tail-recursive memory behavior of the annotated
source.

The c-c-m expression provides the means to extract the values associated
with one or more keys in the mark tables of a continuation.3 The function π~k,
specified in figure 3.3, describes the list that is the result of mark extraction.
This list is constructed by restricting the mark table associated with each

3The given mechanism accommodates c-c-m expressions with zero keys, but the result
is always the null list.

24 CHAPTER 3. A STEPPER BUILT WITH CONTINUATION MARKS

continuation frame to the set of keys specified in the c-c-m expression, and
eliding all empty restrictions. The list comprehensions and explicit uses of list
in the definitions of π~k and φ~k are taken to construct chains of 〈pair :V, V 〉
values.

We use a labeled transition system [35] with 〈port,value〉 pairs to model
output. The port j in this pair designates an output stream for the value. We
must use a model with separate ports in order to annotate a source program
into a target program that produces output, but does not disrupt the program’s
existing output. Expressions other than the output expression produce no
output, indicated in the model with a τ -label. When we write 7→ with no
superscript, it does not mean that there is no output, but rather that the
output is not pertinent.

The evaluator is safe-for-space [11]. That is, every reduction maintains
the invariant that each environment contains bindings only for variables that
occur free in the associated terms.4 This invariant is explicitly enforced for all
reductions, even those where it is already known to hold. This explicit and
uniform enforcement greatly simplifies the proofs later.

Multi-step evaluation 7→→ is defined as the transitive, reflexive closure of the
relation 7→. That is, we say that S1 7→→Sn if n = 1 or there exist S1, . . . , Sn

such that Si 7→ Si+1 for 1 ≤ i < n.
Every Value or Expression configuration has exactly one successor config-

uration. This follows from a simple case analysis: the left-hand sides of the
transition definitions are mutually exclusive and collectively exhaustive, fol-
lowing the structure of either the C register (in the case of an Expression
configuration) or the K register (in the case of a Value configuration).

The function L loads a program as an initial configuration:

L[[(define f1 C1) (define f2 C2) . . .]] = 〈C1, ∅, 〈〈〉, ∅〉, 〈∅, f1, 〈f2, C2〉 . . .〉〉

Evaluation of a program is a partial function:

Eval[[P]] =
{
〈E〉 if L(P)7→→〈E〉
〈error〉 if L(P)7→→〈error〉

Programs may produce output. The Trace function gathers the output at
a given port as a sequence of configurations:5

Tracej(S) = 〈〉

Tracej(S1 7→ S2 7→ . . . 7→ Sn) =

{
V :: Tracej(S2 7→ . . . 7→ Sn) if S1

〈j,V 〉7−→ S2

Tracej(S2 7→ . . . 7→ Sn) otherwise

3.3 Modeling a Stepper

The stepper works by annotating a source program with code fragments that
produce debugging outputs. These debugging outputs are mapped back to ma-

4The function fv computes the free variables of an expression or expressions.
5The infix operator ‘::’ constructs a list from a list element and a list.

3.3. MODELING A STEPPER 25

S1

AS

��

7→ // S2

AS

��

7→ // . . .

AS(S1)
〈debug,V1〉7−→→ //

R

��

AS(S2)
〈debug,V2〉7−→→ //

R

��

. . .

S1 S2

Figure 3.5: The Stepper Architecture

chine configurations. The stepper is correct if the configurations produced by
the reconstruction of the debugging output match the steps taken in the eval-
uation of the original program. No other communication between the stepper
and the runtime system is required.

Figure 3.5 illustrates the induction hypothesis that is the basis for our
correctness proof: each given configuration maps by AS to a corresponding
configuration that occurs in the evaluation of the annotated program, and R
maps the debugging outputs to configurations that match those of the original
machine.

The next three subsections explain the details of our stepper model. Subsec-
tion 3.3 describes the source-to-source transformation that annotates the given
program into one that emits state information. Subsection 3.3 outlines the
configuration annotation that is the basis for the induction hypothesis. Sub-
section 3.3 explains the mapping from the values that the annotated program
outputs back to the configurations of the original program.

Annotation

The stepper must preserve the behavior defined by the source program. For
this reason, the annotation must use a mark key, an output port, and a set of
lexical identifiers that do not occur in the source program. Since mark keys,
ports, and identifiers are statically evident in the source program, this is not
difficult. For simplicity, then, we assume that the source program does not use
the mark key debug , the output port debug , or any of a set of lexical identifiers
we shall denote as t1, t2, . . . or tdc. We say that the predicate Clean() holds
for programs, configurations, environments, and mark tables that fulfill these
requirements. A conflict may be resolved by α-renaming.

Figure 3.6 summarizes the functions that perform the annotation. We ex-
plain each in the following subsections. Their full definitions appear in ap-
pendix A.1.

26 CHAPTER 3. A STEPPER BUILT WITH CONTINUATION MARKS

Annotate : Program → Program Annotate a program

AC~k : Expr → Expr Annotate an expression

E~k : Expr → Expr
Wrap an expression in a mark-
destroying w-c-m

B~k : Expr× Expr → Expr
Wrap a breakpoint around an
expression

Q : Expr → Expr Quote an expression

Figure 3.6: Annotation Functions

Outermost Annotation: Annotate

The outermost annotation function, Annotate, is a simple wrapper for the main
annotation function. It adds a top-level breakpoint to allow reconstruction of
the final step in a definition’s evaluation.

In order to accurately reconstruct the context, the breakpoint expression’s
c-c-m must gather all mark values placed by the source program. However,
there is no way to precisely compute the possible contexts in which an expres-
sion may appear. Our model chooses the simplest conservative approximation
to this set by capturing mark values associated with all keys used in the source
program at each breakpoint. This is the set ~k that parameterizes the functions
AC , W, E , and B.

Annotation: AC and W

The functions AC and W define annotation on expressions. The function W
takes the form of a structural induction over the list of non-tail subexpressions.
For each non-tail subexpression in the argument, W results in a w-c-m, a
breakpoint, and a term that evaluates the subexpression.

The function AC is a wrapper for W that maps a language term onto a
language-independent representation. That is, it separates an expression into
a label, a set of non-tail subexpressions, and a single tail expression. This
function encapsulates the knowledge about the source language needed for the
annotation, and extending the language with a new form requires adding a
clause to the definition of A.

Expression Breakpoints: E

The function E wraps each expression in a place-holding w-c-m and a break-
point around an annotated expression. The trivial w-c-m serves to overwrite
the mark associated with the prior expression’s evaluation. In the absence of
this w-c-m, spurious information is retained on tail calls.

3.3. MODELING A STEPPER 27

AS~k : Configuration → Configuration Annotate a configuration

AK~k : Continuation× Topenv → Continuation Annotate a continuation

AV ~k : Value → Value Annotate a value

AE~k : Env → Env Annotate an environment

AD~k : Topenv → Topenv Annotate a top-level environment

7→s: Expr× Env× Env → Value Static Evaluation

Figure 3.7: Configuration Annotation Functions

Breakpoint syntax: B

The breakpoint function B adds an output expression to its argument. The
breakpoints of our model emit output rather than halting execution. Never-
theless, we retain the breakpoint name as the most natural one.

The B function accepts two arguments:

• a ‘to-be-wrapped’ expression, and

• a ‘to-be-output’ expression.

As the names suggest, the resulting expression outputs the result of the second
argument before evaluating the first.

The function B is the only one whose result depends on the set of keys that
parameterizes every annotation function. The mark values associated with
the named keys are captured at the breakpoint, along with the mark values
associated with the debug key by the stepper’s own w-c-ms.

Quoting: Q

The Q function maps source expressions to expressions whose evaluated result
encodes those source expressions. The only requirements are that the expres-
sions produced by Q evaluate to values that can be unambiguously mapped
back to the source expressions, and secondarily that the quoted expressions are
evaluated in minimal time. In our model, we settle for a function that uses
linear time in the size of the expression. This is reduced to a constant time in
our actual implementation, as we discuss later.

Configuration Annotation

The statement of the inductive hypothesis is based on a mapping from config-
urations to configurations, AS . This mapping relies upon the mapping from
expressions to expressions (AC) described earlier, along with annotation func-
tions for continuations (AK), values (AV) environments (AE), and top-level
environments (AD). Figure 3.7 summarizes these functions. We describe each

28 CHAPTER 3. A STEPPER BUILT WITH CONTINUATION MARKS

of them in the following subsections, and their full definitions appear in ap-
pendix A.1.

Configuration Annotation: AS

Configuration annotation is defined as the application of the appropriate an-
notation function to each register of the machine.

Continuation Annotation: AK

The function AK maps continuations to annotated continuations. It is a ho-
momorphism over chains of continuation frames. Each continuation frame in
the original is represented by an app frame in the annotated continuation. The
structure of this application frame follows from the definition of expression an-
notation, taking into account the fact that the code fragments introduced by
annotation will be in a partially evaluated state.

Like the function AC , the function Ak relies upon a language-independent
abstraction, WK .

Continuation annotation must also produce mark tables containing values
that are the result of evaluating w-c-m expressions. Fortunately, the mark
expressions produced by annotation are part of a strongly normalizing subset
of the language and may therefore be mapped to their evaluated counterparts.6

The annotated continuation also depends upon the top-level environment,
D, as this environment is encoded in the outermost continuation frame.

Value Annotation: AV

Value annotation is defined by the function AV . Closures in annotated values
contain annotated bodies. Annotated values are otherwise identical to their
unannotated counterparts.

Environment Annotation: AE

The function AE defines the annotation of environments and mark tables. It
follows directly from the annotation of values.

Top-level Environment Annotation: AD

The function AD annotates top-level environments. The annotated definitions
depend upon the names of the prior definitions, as well as the current and
remaining definitions.

3.4. CORRECTNESS 29

Reconstruct : Value → Configuration Reconstruct a configuration

RK : Value → Continuation Reconstruct a continuation

RE : Value → Expr Reconstruct an environment

Figure 3.8: Reconstruction Functions

Reconstruction

The annotated program outputs a sequence of values to the debug port. The
Reconstruct function maps this sequence of values back to a sequence of con-
figurations. Figure 3.8 summarizes the reconstruction functions. Their full
definitions appear in appendix A.1.

Throughout these definitions, we condense the text by using the input
forms rather than the output forms. That is, we write (cons A null) rather
than 〈pair: A, 〈null〉〉. This is possible because evaluation defines a context-
independent bijection for terms containing only constants and cons. In a
similar manner, we write Q−1 to map values back to terms. Since Q’s inverse
would naturally map terms to terms, Q−1 in fact denotes the composition of
the mapping from values back to terms and the true inverse of Q. A similar
convention is used for the function Q−1

D . Finally, the function A−1
V maps anno-

tated values back to their unannotated counterparts. Inspection of AV shows
that it (and the other annotation functions) are injective, making the inverse
mapping a function. Further, note that the set of keys ~k is not needed for
the inverse mapping, and therefore that A−1

V , A−1
C , B−1, E−1, and W−1 are

well-defined without it.
At each step, the value output by the annotated program corresponds to a

single configuration. This value is structured as a list of lists. Figure 3.9 shows
a template for this value.

Rebuilding a configuration from such values is a straightforward recursive
process. The Reconstruct() function produces either a value or an expression
configuration using the information in the first element of the output value. The
Rk function reconstructs the configuration’s continuation by recursive descent
on the remainder of the output value.

3.4 Correctness

This section contains two results. First, the two non-interference theorems show
that the annotated program produces the same results as the source program.
Second, the correctness theorem demonstrates that the stepper is correct.

6Since configuration annotation is used only in the proof of correctness, we care only that
the function is well-defined, and not that it be easily or efficiently implementable.

30 CHAPTER 3. A STEPPER BUILT WITH CONTINUATION MARKS

ccm-val = (list outer-info frame-info . . .)

outer-info = (list ’expstep Q(C) E) | (list ’valstep V)

frame-info = (list (list ’debug kont-val) (list V V) . . .)

kont-val = (list V ; tag

(list V . . .) ; temp vals

(list (list Q(C) V) . . .) ; binding pairs

(list Q(C) . . .) ; non-tail exps

(list Q(C) . . .)) ; tail exps

Figure 3.9: Debug Value Template

Theorem 1 (Result Non-interference) For any program P containing keys
~k such that Clean(P), Eval(P) = S if and only if Eval(Annotate(P)) = AS~k(S)

Theorem 2 (Output Non-interference) For any program P with keys ~k
and for any output port o other than debug, if L(P)7→→Sn, then

AV ~k(Traceo(L(P)7→→Sn)) = Traceo(L(Annotate(P))7→→AS~k(Sn))

Theorem 3 (Stepper Correctness) Given a program P containing keys ~k
such that Clean(P) (and let S1 = L(P)), and an evaluation sequence S1 7→→Sn

where n > 1, then

Reconstruct(Tracedebug(L(Annotate(S1))7→→Sn))

=
{
〈S1, . . . , Sn〉 when Sn is an Expression configuration, or
〈S1, . . . , Sn−1〉 otherwise.

All three of these depend on a simulation lemma, a loading lemma, and a
cleanliness preservation lemma. The following three subsections prove these
lemmas.

Simulation Lemma

In order to prove non-interference and correctness, we must first establish a link
between the evaluation of a source program and the evaluation of its annotated
counterpart. As the diagram in figure 3.5 shows, the configurations in the
evaluation of the source program are related by the annotation function to (a
subsequence of) the configurations of the annotated program. The following
lemma describes the relationship between the two evaluations.

Lemma 1 (Multi-step Simulation) Given a configuration S1 where Clean(S1)
and S1 7→ S2, and any set of keys ~k,

AS~k(S1)7→→AS~k(S2)

3.4. CORRECTNESS 31

S1

AS

��

7→ // S2

AS

��
AS(S1)

7→→ // AS(S2)

Figure 3.10: The Simulation Lemma

In other words: for every step the original machine takes, the annotated
machine takes several steps. No constraint is placed on the set ~k; the lemma
holds for any such set. This argument to the annotation is constrained only
when we prove that the reconstructed terms match the steps taken by the
original machine.

This lemma is expressed graphically in figure 3.10. This lemma forms the
basis for the proof illustrated in figure 3.5.

Several auxiliary lemmas are needed for the proof of lemma 1:

Lemma 2 (Quoted expressions converge) • For any expression C, en-
vironment E, continuation pair 〈K, M〉, and definitions D, there exists
V such that 〈Q(C), E, 〈K, M〉, D〉7→→〈V, 〈K, M〉, D〉. That is, a quoted
expression always converges to a value.

• For any expression C, Q(C) has no free variables.

Both halves of lemma 2 follow from the definition of Q; the resulting ex-
pressions contain only cons, null, and constants.

Lemma 3 (No extra free variables in annotation) For any expression C

and key set ~k, fv(C) = fv(AC~k(C)). That is, annotation does not change the
set of free variables.

The proof of lemma 3 follows by structural induction on source terms, and
(within this) on left-to-right induction on the non-tail subterms of individual
expressions, following the structure of the function AC .

In the following sections, we prove the principal lemma, number 1, by con-
sidering each class of configuration as the left-hand side (S1) of the transition.

Finished and Error Configurations

The Finished and Error configurations have no next step. If S1 is either of
these, then it cannot be that S1 7→ S2. The lemma holds trivially for these two
cases.

32 CHAPTER 3. A STEPPER BUILT WITH CONTINUATION MARKS

Expression Configurations

The transitions on Expression configurations are determined by the configu-
ration’s expression, C. We proceed by case analysis on this expression, with
arbitrary E, K, M , and D.

Numbers, n: By the definition of the abstract machine,

S1 = 〈n, E, 〈K, M〉, D〉 7→ 〈〈num : n〉, 〈K, ∅〉, D〉 = S2

By the definition of configuration annotation, furthermore,

AS~k(S1) = 〈n,AE~k(E), 〈AK~k(K, D),AE~k(M)[debug 7→ 〈false〉]〉,AD~k(D)〉

and
AS~k(S2) = 〈〈num : n〉, 〈AK~k(K, D), ∅〉,AD~k(D)〉

So we must show that

〈n,AE~k(E), 〈AK~k(K, D),AE~k(M)[debug 7→ 〈false〉]〉,AD~k(D)〉
7→→〈〈num : n〉, 〈AK~k(K, D), ∅〉,AD~k(D)〉

This transition occurs in one step, so the lemma is proved for this case.

Other Constants: Other constants (symbols, primitives, null, true, and
false) are precisely analogous. To prove the lemma for these cases, we substi-
tute the corresponding expression and value forms for n and 〈num : n〉 in the
case above.

Variable references: Variable references are similarly simple. In the case of
a successful variable reference (either lexical or top-level), we may substitute the
variable reference (x or f) for n and the appropriate environment application
for 〈num : n〉.

In the case of a top-level reference to an unevaluated binding, we prove the
lemma by substituting the variable reference for n, and 〈Error〉 for both S2

and AS~k(S2).

The Lambda Expression: By the definition of the abstract machine,

S1 = 〈(lambda (x . . .) C), E, 〈K, M〉, D〉
7→ 〈〈clo : 〈x, ...〉, C, E|fv(C)\{x,...}〉, 〈K, ∅〉, D〉 = S2

By the definition of configuration annotation, furthermore,

AS~k(S1) = 〈(lambda (x . . .) E~k(C)),AE~k(E),
〈AK~k(K, D),AE~k(M)[debug 7→ 〈false〉]〉,AD~k(D)〉

3.4. CORRECTNESS 33

and

AS~k(S2) = 〈〈clo : 〈x, ...〉, E~k(C),AE~k(E|fv(C)\{x,...})〉, 〈AK~k(K, D), ∅〉,AD~k(D)〉

So we must show that

〈(lambda (x . . .) E~k(C)),AE~k(E),
〈AK~k(K, D),AE~k(M)[debug 7→ 〈false〉]〉,AD~k(D)〉

7→→〈〈clo : 〈x, ...〉, E~k(C),AE~k(E|fv(C)\{x,...})〉, 〈AK~k(K, D), ∅〉,AD~k(D)〉

By the definition of the abstract machine,

AS~k(S1) 7→ 〈〈clo : 〈x, ...〉, E~k(C), (AE~k(E))|fv(E~k
(C))\{x,...}〉,

〈AK~k(K, D),AE~k(M)〉,AD~k(D)〉

But by the definition of AE and lemma 3,

AE~k(E)|fv(E~k(C))\{x,...} = AE~k(E|fv(E~k(C))\{x,...}) = AE~k(E|fv(C)\{x,...})

So this transition occurs in one step.

The C-c-m Expression: By the definition of the abstract machine,

S1 = 〈(c-c-m k′ . . .), E, 〈K, M〉, D〉 7→ 〈π~k′(〈K, M〉), 〈K, ∅〉, D〉 = S2

By the definition of configuration annotation, furthermore,

AS~k(S1) =
〈(c-c-m k′ . . .),AE~k(E), 〈AK~k(K, D),AE~k(M)[debug 7→ 〈false〉]〉,AD~k(D)〉

and
AS~k(S2) = 〈AV ~k(π~k′(〈K, M〉)), 〈AK~k(K, D), ∅〉,AD~k(D)〉

So we must show that

〈(c-c-m k′ . . .),AE~k(E), 〈AK~k(K, D),AE~k(M)[debug 7→ 〈false〉]〉,AD~k(D)〉
7→→〈AV ~k(π~k′(〈K, M〉)), 〈AK~k(K, D), ∅〉,AD~k(D)〉

By the definition of the abstract machine,

AS~k(S1) 7→ 〈π~k′(〈AK~k(K, D),AE~k(M)〉), 〈AK~k(K, D), ∅〉,AD~k(D)〉

We can now prove that AV ~k(π~k′〈K, M〉) = π~k′〈AK~k(K, D),AE~k(M)〉.
By the definition of π~k′ ,

AV ~k(π~k′(〈K, M〉)) = AV ~k([φ~k′(M)|M = M1 . . .Mn and φ~k′(M) 6= 〈null〉])

for the sequence of marks M1 . . .Mn contained in the continuation.

34 CHAPTER 3. A STEPPER BUILT WITH CONTINUATION MARKS

Turning to the other half of the equation, we see by the definition of AK

that the sequence of marks contained in 〈AK~k(K, D),AE~k(M)〉 is

M ′
1 = AE~k(M1)

M ′
2 = AE~k(M2)[debug 7→ V1]
. . .

M ′
n = AE~k(Mn)[debug 7→ Vn−1]

M ′
n+1 = ∅[debug 7→ Vn]

for some set of values V1 . . . Vn.

We know that Clean(S1) and therefore that debug 6∈ k′, so for all M and
V , φ~k′(M [debug 7→ V]) = φ~k′(M).

So π~k′(〈AK~k(K, D),AE~k(M)〉)
= [φ~k′(M ′)|M ′ = 〈M ′

1, . . . ,M
′
n+1〉 and φ~k′(M ′) 6= 〈null〉]

(by the definition of π~k′)
= [φ~k′(M ′)|M ′ = 〈AE~k(M1), . . . ,AE~k(Mn), ∅〉 and φ~k′(M ′) 6= 〈null〉]

(since φ~k′(M [debug 7→ V]) = φ~k′(M))
= [φ~k′(M ′)|M ′ = 〈AE~k(M1), . . . ,AE~k(Mn)〉 and φ~k′(M ′) 6= 〈null〉]

(because φ~k′(∅) = 〈null〉)
= [φ~k′(AE~k(M))|M = 〈M1, . . . ,Mn〉 and φ~k′(M) 6= 〈null〉]

(because φ~k′(M) = 〈null〉 iff φ~k′(AE~k(M)) = 〈null〉
for all k, k′, and M)

= [AV ~k(φ~k′(M))|M = 〈M1, . . . ,Mn〉 and φ~k′(M) 6= 〈null〉]
(because φ~k′(AE~k(M)) = AV ~k(φ~k′(M)) for all M,k, and k′)

= AV ~k[φ~k′(M)|M = 〈M1, . . . ,Mn〉 and φ~k′(M) 6= 〈null〉]
(by the definition of AV ~k)

So this transition occurs in one step.

All Other Expressions The remaining expressions all have non-tail expres-
sions. The proof cases for each of these differ only in minor ways. We therefore
present only the proof for a representative class of expressions, the if expres-
sions.

By the definition of the abstract machine,

3.4. CORRECTNESS 35

S1 = 〈(if C1 C2 C3), E, 〈K, M〉, D〉
7→ 〈C1, E|fv(C1), 〈〈if : C2, C3, E|fv(C2,C3), 〈K, M〉〉, ∅〉, D〉 = S2

By the definition of configuration annotation, furthermore,

AS~k(S1) = 〈C ′,AE~k(E), 〈AK~k(K, D),AE~k(M)[debug 7→ 〈false〉]〉,AD~k(D)〉

where

C′ = (w-c-m debug
(list ’if null (list (list ’x x) . . .) ;; for x ∈ fv(C2, C3)

null (list Q(C2) Q(C3)) null)
(let ([t1 E~k(C1)])

(begin
(output debug (list (list ’valstep t1)

(c-c-m debug k . . .))) ;; for k ∈ ~k
(if t1 E~k(C2) E~k(C3)))))

and

AS~k(S2) = 〈AC~k(C1),AE~k(E)|fv(C1),
〈〈app : 〈〈clo : 〈t1〉, C ′,AE~k(E)|fv(C2,C3)〉〉, 〈〉, ∅,

〈AK~k(K, D),AE~k(M)[debug 7→ V ′]〉〉, ∅[debug 7→ 〈false〉]〉,
AD~k(D)〉

where

C ′ = (begin (output debug
(list (list ’valstep t1) (c-c-m debug k . . .)))

(if t1 E~k(C2) E~k(C3)))

and V ′ is the result of evaluating the mark term.
We must show that AS~k(S1)7→→AS~k(S2). Figure 3.11 shows the key steps in

this evaluation in abbreviated form (where C refers to an omitted expression,
and so forth). The numeric indices refer to the individual steps taken by the
machine. The vast majority of the elided steps concern the evaluation of the
mark expressions, and the precise number of such steps depends on the choice
of C1, C2, C3, and D. The time taken by these steps is reduced to near-
constant time in our implementation, where mark values are represented as
lambda terms that go in one step to closures. The final step is equal to AS~k,
and the lemma holds for this case (and, by extension, for all other expression
configurations).

Value Configurations

Value reductions make up the final group of configurations in the proof of
lemma 1. Value reductions fall into four sub-categories, based on the topmost

36 CHAPTER 3. A STEPPER BUILT WITH CONTINUATION MARKS

0 〈(w-c-m debug (list . . .) (let ((t1 C)) C)),
AE~k(E), 〈AK~k(K, D),AE~k(M)[debug 7→ V]〉,AD~k(D)〉

35 〈(let ((t1 E~k(C1))) (begin C C)),

E , 〈AK~k(K, D),AE~k(M)[debug 7→ V]〉,AD~k(D)〉
38 〈E~k(C1), E , 〈〈app : K〉, ∅〉,AD~k(D)〉
41 〈(begin (output debug C) AC~k(C1)),

E , 〈〈app : K〉, ∅[debug 7→ V]〉,AD~k(D)〉
44 〈(output debug (list C C)), E , 〈〈app : K〉, ∅〉,AD~k(D)〉
67 〈〈false〉, 〈〈app : K〉, ∅〉,AD~k(D)〉
68 〈AC~k(C1), E |fv(C1), 〈〈app : K〉, ∅[debug 7→ V]〉,AD~k(D)〉

Figure 3.11: Steps taken in reduction of if to test position

frame of the current continuation. In the first case, the topmost frame has
additional non-tail expressions to evaluate. In the second, the configuration’s
value is the last non-tail expression but the frame has a tail subexpression. In
the third, the frame produces a value directly. In the fourth, the continuation
stack is empty.

Non-tail Expressions Remaining The first case includes application with
remaining non-tail subexpressions and also the cons1 continuation frame. We
present the proof for the cons1 continuation frame.

By definition of the abstract machine,

S1 = 〈V, 〈〈cons1 : C,E, 〈K, M〉〉,M0〉, D〉
7→ 〈C,E|fv(C), 〈〈cons2 : V, 〈K, M〉〉, ∅〉, D〉 = S2

By the definition of configuration annotation, furthermore,

AS~k(S1) = 〈AV ~k(V),
〈〈app : 〈〈clo : 〈t1〉, C ′,AE~k(E)〉〉, 〈〉, ∅,

〈AK~k(K, D),AE~k(M)[debug 7→ V ′]〉〉, ∅〉,AD~k(D)〉

where

C′ = (begin (output debug (list (list ’valstep t1) (c-c-m debug k . . .)))
(w-c-m debug

(list ’cons (list t1) null null null null)
(let ((t2 E~k(C))

(begin (output debug (list (list ’valstep t2)
(c-c-m debug k . . .)))

(cons t1 t2)))))

and V ′ is the result of evaluating the mark term.
Also by definition of configuration annotation,

3.4. CORRECTNESS 37

0 〈AV ~k(V), 〈〈app : K〉, ∅〉,AD~k(D)〉
1 〈(begin (output debug C) (w-c-m debug C C)),

E , 〈AK~k(K, D),AE~k(M)[debug 7→ V]〉,AD~k(D)〉
4 〈(output debug (list C C)), E , 〈〈app : K〉, ∅〉,AD~k(D)〉
23 〈〈false〉, 〈〈app : K〉, ∅〉,AD~k(D)〉
24 〈(w-c-m debug (list . . .) (let ((t2 C)) C)),

E , 〈AK~k(K, D),AE~k(M)[debug 7→ V]〉,AD~k(D)〉
55 〈(let ((t2 E~k(C))) (begin C C)),

E , 〈AK~k(K, D),AE~k(M)[debug 7→ V]〉,AD~k(D)〉
58 〈E~k(C), E , 〈〈app : K〉, ∅〉,AD~k(D)〉
61 〈(begin (output debug C) AC~k(C)),

E , 〈〈app : K〉, ∅[debug 7→ V]〉,AD~k(D)〉
64 〈(output debug (list C C)), E , 〈〈app : K〉, ∅〉,AD~k(D)〉
87 〈〈false〉, 〈〈app : K〉, ∅〉,AD~k(D)〉
88 〈AC~k(C), E |fv(C), 〈〈app : K〉, ∅[debug 7→ V]〉,AD~k(D)〉

Figure 3.12: Steps taken in reduction of cons1 continuation

AS~k(S2) = 〈AC~k(C),AE~k(E),
〈〈app : 〈〈clo : 〈t2〉, C ′, ∅[t1 7→ AV ~k(V)]〉〉, 〈〉, ∅,

〈AK~k(K, D),AE~k(M)[debug 7→ V ′]〉〉, ∅[debug 7→ 〈false〉]〉,
AD~k(D)〉

where

C ′ = (begin (output debug (list (list ’valstep t2) (c-c-m debug k . . .)))
(cons t1 t2))

and

V ′ = 〈pair : 〈sym : cons〉,
〈pair : 〈pair : AV ~k(V), 〈null〉〉,

〈pair : 〈null〉, 〈pair : 〈null〉, 〈pair : 〈null〉, 〈pair : 〈null〉, 〈null〉〉〉〉〉〉〉

Figure 3.12 shows the key steps in the reduction of the cons1 continuation
frame. The final step is equal to AS~k(S2), and the lemma holds for this case.

Tail Expression Remaining The second class of Value configurations are
those whose continuation has no more non-tail expressions but results in a new
tail subexpression. This case includes the if and wcm continuations, as well
as the application continuation with no more non-tail subexpressions, and a

38 CHAPTER 3. A STEPPER BUILT WITH CONTINUATION MARKS

0 〈AV ~k(V), 〈〈app : K〉, ∅〉,AD~k(D)〉
1 〈(begin (output debug C) (w-c-m k C C)),

E , 〈AK~k(K, D),AE~k(M)[debug 7→ V]〉,AD~k(D)〉
4 〈(output debug (list C C)), E , 〈〈app : K〉, ∅〉,AD~k(D)〉
23 〈〈false〉, 〈〈app : K〉, ∅〉,AD~k(D)〉
24 〈(w-c-m k t1 E~k(C)), E , 〈AK~k(K, D),AE~k(M)[debug 7→ V]〉,AD~k(D)〉
25 〈t1, E , 〈〈wcm : K〉, ∅〉,AD~k(D)〉
26 〈AV ~k(V), 〈〈wcm : K〉, ∅〉,AD~k(D)〉
27 〈E~k(C), E , 〈AK~k(K, D),AE~k(M)[debug 7→ V][k 7→ V]〉,AD~k(D)〉
30 〈(begin (output debug C) AC~k(C)),

E , 〈AK~k(K, D),AE~k(M)[k 7→ V][debug 7→ V]〉,AD~k(D)〉
33 〈(output debug (list C C)), E , 〈〈app : K〉, ∅〉,AD~k(D)〉
56 〈〈false〉, 〈〈app : K〉, ∅〉,AD~k(D)〉
57 〈AC~k(C), E |fv(C), 〈AK~k(K, D),AE~k(M)[k 7→ V][debug 7→ V]〉,AD~k(D)〉

Figure 3.13: Steps taken in reduction of wcm continuation

non-primitive first argument. We take the wcm continuation as representative
of this group, and then consider the error that may result from an if.

By definition of the abstract machine,

S1 = 〈V, 〈〈wcm : k, C,E, 〈K, M〉〉, ∅〉, D〉 7→ 〈C, E, 〈K, M [k 7→ V]〉, D〉 = S2

By the definition of configuration annotation, furthermore,

AS~k(S1) = 〈AV ~k(V),
〈〈app : 〈〈clo : 〈t1〉, C ′,AE~k(E)〉〉, 〈〉, ∅,

〈AK~k(K, D),AE~k(M)[debug 7→ V ′]〉〉,AE~k(M0)〉,AD~k(D)〉

where

C ′ = (begin (output debug (list (list ’valstep t1) (c-c-m debug k . . .)))
(w-c-m k t1 E~k(C)))

and V ′ is the result of evaluating the mark term.
Also by definition of configuration annotation,

AS~k(S2) = 〈AC~k(C),AE~k(E),
〈AK~k(K, D),AE~k(M)[k 7→ AV ~k(V)][debug 7→ 〈false〉]〉,AD~k(D)〉

Figure 3.13 shows the key steps in the reduction of the wcm continuation
frame. The final step is equal to AS~k(S2), and the lemma holds for this case.

3.4. CORRECTNESS 39

The reduction of an if continuation may also result in an error, when the
configuration’s value is neither true nor false. We take as a representative
non-boolean value the number 0.

By definition of the abstract machine,

S1 = 〈〈num : 0〉, 〈〈if : C2, C3, E, 〈K, M〉〉, ∅〉, D〉 7→ 〈error〉 = S2

By the definition of configuration annotation, furthermore,

AS~k(S1) = 〈〈num : 0〉,
〈〈app : 〈〈clo : 〈t1〉, C ′,AE~k(E)〉〉, 〈〉, ∅,
〈AK~k(K, D),AE~k(M)[debug 7→ V ′]〉〉,AE~k(M0)〉,
AD~k(D)〉

where

C ′ = (begin (output debug (list (list ’valstep t1) (c-c-m debug k . . .)))
(if t1 E~k(C2) E~k(C3)))

and V ′ is the result of evaluating the mark term.
Also by the definition of configuration annotation,

AS~k(S2) = 〈error〉

Figure 3.14 shows the key steps in the reduction of the if continuation
frame to an error. The final step is equal to AS~k(S2), and the lemma holds for
this case.

New Value Reductions The third class includes all those whose continu-
ation frames have no remaining non-tail subexpressions. This corresponds to
the cons2, car, cdr, and out continuation frames, and also to the application
frame when a primitive is invoked. We take the cons2 continuation as a rep-
resentative of this class, and then consider the error that may result from the
evaluation of a car continuation.

By definition of the abstract machine,

S1 = 〈V2, 〈〈cons2 : V1, 〈K, M〉〉, ∅〉, D〉 7→ 〈〈pair : V1, V2〉, 〈K, ∅〉, D〉 = S2

By definition of configuration annotation, furthermore,

AS~v(S1) = 〈AV ~k(V2), 〈〈app : 〈〈clo : 〈t2〉, C ′, ∅[t1 7→ AV ~k(V1)]〉〉, 〈〉, ∅,
〈AK~k(K, D),AE~k(M)[debug 7→ V ′]〉〉,AE~k(M0)〉,AD~k(D)〉

where

C ′ = (begin (output debug (list (list ’valstep t2) (c-c-m debug k . . .)))
(cons t1 t2))

40 CHAPTER 3. A STEPPER BUILT WITH CONTINUATION MARKS

0 〈〈num : 0〉, 〈〈app : K〉, ∅〉,AD~k(D)〉
1 〈(begin (output debug C) (if C C C)),

E , 〈AK~k(K, D),AE~k(M)[debug 7→ V]〉,AD~k(D)〉
4 〈(output debug (list C C)), E , 〈〈app : K〉, ∅〉,AD~k(D)〉
23 〈〈false〉, 〈〈app : K〉, ∅〉,AD~k(D)〉
24 〈(if t1 E~k(C2) E~k(C3)), E , 〈AK~k(K, D),AE~k(M)[debug 7→ V]〉,AD~k(D)〉
25 〈t1, E ,

〈〈if : E~k(C2), E~k(C3), E ,
〈AK~k(K, D),AE~k(M)[debug 7→ V]〉〉, ∅〉,AD~k(D)〉

26 〈〈num : 0〉,
〈〈if : E~k(C2), E~k(C3), E ,
〈AK~k(K, D),AE~k(M)[debug 7→ V]〉〉, ∅〉,AD~k(D)〉

27 〈error〉

Figure 3.14: Steps taken in reduction of if continuation leading to an error

and

V ′ = 〈pair : 〈sym : cons〉,
〈pair : 〈pair : AV ~k(V1), 〈null〉〉,
〈pair : 〈null〉, 〈pair : 〈null〉, 〈pair : 〈null〉, 〈pair : 〈null〉, 〈null〉〉〉〉〉〉〉

Also by definition of configuration annotation,

AS~v(S2) = 〈〈pair : AV ~k(V1),AV ~k(V2)〉,
〈AK~k(K, D), ∅〉,AD~k(D)〉

Figure 3.15 shows the key steps in the reduction of the cons2 continuation
frame. The final step is equal to AS~k(S2), and the lemma holds for this case.

The reduction of an car continuation may also result in an error, when the
configuration’s value is not a pair. We take as a representative illegal value the
number 0.

By definition of the abstract machine,

S1 = 〈〈num : 0〉, 〈〈car : 〈K, M〉〉, ∅〉, D〉 7→ 〈error〉 = S2

By the definition of configuration annotation, furthermore,

AS~k(S1) = 〈〈num : 0〉,
〈〈app : 〈〈clo : 〈t1〉, C ′, ∅〉〉, 〈〉, ∅,
〈AK~k(K, D),AE~k(M)[debug 7→ V ′]〉〉,AE~k(M0)〉,AD~k(D)〉

3.4. CORRECTNESS 41

0 〈AV ~k(V2), 〈〈app : K〉, ∅〉,AD~k(D)〉
1 〈(begin (output debug C) (cons C C)),

E , 〈AK~k(K, D),AE~k(M)[debug 7→ V]〉,AD~k(D)〉
4 〈(output debug (list C C)), ∅[t2 7→ V], 〈〈app : K〉, ∅〉,AD~k(D)〉
23 〈〈false〉, 〈〈app : K〉, ∅〉,AD~k(D)〉
24 〈(cons t1 t2), E , 〈AK~k(K, D),AE~k(M)[debug 7→ V]〉,AD~k(D)〉
25 〈t1, ∅[t1 7→ V],

〈〈cons1 : t2, ∅[t2 7→ V],
〈AK~k(K, D),AE~k(M)[debug 7→ V]〉〉, ∅〉,AD~k(D)〉

26 〈AV ~k(V1),
〈〈cons1 : t2, ∅[t2 7→ V],
〈AK~k(K, D),AE~k(M)[debug 7→ V]〉〉, ∅〉,AD~k(D)〉

27 〈t2, ∅[t2 7→ V],
〈〈cons2 : AV ~k(V1),
〈AK~k(K, D),AE~k(M)[debug 7→ V]〉〉, ∅〉,AD~k(D)〉

28 〈AV ~k(V2), 〈〈cons2 : AV ~k(V1), 〈AK~k(K, D),AE~k(M)[debug 7→ V]〉〉, ∅〉,AD~k(D)〉
29 〈〈pair : AV ~k(V1),AV ~k(V2)〉, 〈AK~k(K, D), ∅〉,AD~k(D)〉

Figure 3.15: Steps taken in reduction of cons2 continuation

where

C ′ = (begin (output debug (list (list ’valstep t1) (c-c-m debug k . . .))) (car t1))

and V ′ is the result of evaluating the mark term.
Also by the definition of configuration annotation,

AS~k(S2) = 〈error〉

Figure 3.16 shows the key steps in the reduction of the car continuation
frame to an error. The final step is equal to AS~k(S2), and the lemma holds for
this case.

Empty Stack The fourth and final case occurs when the continuation stack
is empty. There are two sub-cases; one that arises when some definitions remain
to be evaluated, and one that occurs when no definitions remain.

Suppose on the one hand that D is of the form 〈E, f, 〈〈f1, C1〉, . . .〉〉. By
the definition of the abstract machine,

S1 = 〈V, 〈〈〉, ∅〉, 〈E, f, 〈〈f1, C1〉, 〈f2, C2〉, . . .〉〉〉
7→ 〈C1, ∅, 〈〈〉, ∅〉, 〈E[f 7→ V], f1, 〈〈f2, C2〉, . . .〉〉〉 = S2

By definition of configuration annotation, furthermore,

42 CHAPTER 3. A STEPPER BUILT WITH CONTINUATION MARKS

0 〈〈num : 0〉, 〈〈app : K〉, ∅〉,AD~k(D)〉
1 〈(begin (output debug C) (car C)),

∅[t1 7→ V], 〈AK~k(K, D),AE~k(M)[debug 7→ V]〉,AD~k(D)〉
4 〈(output debug (list C C)), ∅[t1 7→ V], 〈〈app : K〉, ∅〉,AD~k(D)〉
23 〈〈false〉, 〈〈app : K〉, ∅〉,AD~k(D)〉
24 〈(car t1), ∅[t1 7→ V], 〈AK~k(K, D),AE~k(M)[debug 7→ V]〉,AD~k(D)〉
25 〈t1, ∅[t1 7→ V], 〈〈car : 〈AK~k(K, D),AE~k(M)[debug 7→ V]〉〉, ∅〉,AD~k(D)〉
26 〈〈num : 0〉, 〈〈car : 〈AK~k(K, D),AE~k(M)[debug 7→ V]〉〉, ∅〉,AD~k(D)〉
27 〈error〉

Figure 3.16: Steps taken in reduction of car continuation leading to an error

AS~k(S1) = 〈AV ~k(V),
〈〈app : 〈〈clo : 〈t1〉, C ′, ∅〉〉, 〈〉, ∅, 〈〈〉, ∅[debug 7→ V ′]〉〉,AE~k(M0)〉,
AD~k(〈E, f, 〈〈f1, C1〉, 〈f2, C2〉, . . .〉〉)〉

where

C ′ = (begin (output debug (list (list ’valstep t1) (c-c-m debug k . . .))) t1)

and V ′ is the result of evaluating the debug mark.
Also by the definition of configuration annotation,

AS~k(S2) = 〈AC~k(C1), ∅,
〈〈app : 〈〈clo : 〈t1〉, C ′, ∅〉〉, 〈〉, ∅, 〈〈〉, ∅[debug 7→ V ′]〉〉,

∅[debug 7→ 〈false〉]〉,
AD~k(〈E[f 7→ V], f1, 〈〈f2, C2〉, . . .〉〉)〉

where

C ′ = (begin (output debug (list (list ’valstep t1) (c-c-m debug k . . .))) t1)

and V’ is the result of evaluating the debug mark.
Figure 3.17 shows the key steps in the reduction of the empty continuation

frame. The final step is equal to AS~k(S2), and the lemma holds for this case.
Suppose on the other hand that D is of the form 〈E, f, 〈〉〉. By the definition

of the abstract machine,

S1 = 〈V, 〈〈〉, ∅〉, 〈E, f, 〈〉〉〉 7→ 〈E[f 7→ V]〉 = S2

By definition of configuration annotation, furthermore,

3.4. CORRECTNESS 43

0 〈AV ~k(V), 〈〈app : K〉, ∅〉,AD~k(〈 E , f, 〈〈f1, C1〉, 〈f2, C2〉, . . .〉〉)〉
1 〈(begin (output debug C) t1),

∅[t1 7→ V], 〈〈〉, ∅[debug 7→ V]〉,AD~k(〈 E , f, 〈〈f1, C1〉, 〈f2, C2〉, . . .〉〉)〉
4 〈(output debug (list C C)),

∅[t1 7→ V], 〈〈app : K〉, ∅〉,AD~k(〈 E , f, 〈〈f1, C1〉, 〈f2, C2〉, . . .〉〉)〉
23 〈〈false〉, 〈〈app : K〉, ∅〉,AD~k(〈 E , f, 〈〈f1, C1〉, 〈f2, C2〉, . . .〉〉)〉
24 〈t1, ∅[t1 7→ V], 〈〈〉, ∅[debug 7→ V]〉,AD~k(〈 E , f, 〈〈f1, C1〉, 〈f2, C2〉, . . .〉〉)〉
25 〈AV ~k(V), 〈〈〉, ∅〉,AD~k(〈 E , f, 〈〈f1, C1〉, 〈f2, C2〉, . . .〉〉)〉
26 〈(w-c-m debug (list . . .) (let ((t1 C)) C)),

∅, 〈〈〉, ∅〉,AD~k(〈 E [f 7→ V], f1, 〈〈f2, C2〉, . . .〉〉)〉
73 〈(let ((t1 (w-c-m debug C C))) (begin C C)),

∅, 〈〈〉, ∅[debug 7→ V]〉,AD~k(〈 E [f 7→ V], f1, 〈〈f2, C2〉, . . .〉〉)〉
76 〈(w-c-m debug false (begin C C)),

∅, 〈〈app : K〉, ∅〉,AD~k(〈 E [f 7→ V], f1, 〈〈f2, C2〉, . . .〉〉)〉
79 〈(begin (output debug C) AC~k(C1)),

∅, 〈〈app : K〉, ∅[debug 7→ V]〉,AD~k(〈 E [f 7→ V], f1, 〈〈f2, C2〉, . . .〉〉)〉
82 〈(output debug (list C C)),

∅, 〈〈app : K〉, ∅〉,AD~k(〈 E [f 7→ V], f1, 〈〈f2, C2〉, . . .〉〉)〉
105 〈〈false〉, 〈〈app : K〉, ∅〉,AD~k(〈 E [f 7→ V], f1, 〈〈f2, C2〉, . . .〉〉)〉
106 〈AC~k(C1),

∅, 〈〈app : K〉, ∅[debug 7→ V]〉,AD~k(〈 E [f 7→ V], f1, 〈〈f2, C2〉, . . .〉〉)〉

Figure 3.17: Steps taken in reduction of empty continuation

AS~k(S1) = 〈AV ~k(V),
〈〈app : 〈〈clo : 〈t1〉, C ′, ∅〉〉, 〈〉, ∅, 〈〈〉, ∅[debug 7→ V ′]〉〉,AE~k(M0)〉,
〈AE~k(E), f, 〈〉〉〉

where

C ′ = (begin (output debug (list (list ’valstep t1) (c-c-m debug k . . .))) t1)

and V ′ is the result of evaluating the mark term.
Also by definition of configuration annotation,

AS~k(S2) = 〈AE~k(E)[f 7→ AV ~k(V)]〉

Figure 3.18 shows the key steps in the reduction of the AS~k(S1) config-
uration. The final step is equal to AS~k(S2), and the lemma holds for this
case.

This concludes our sketch of the proof of lemma 1.

44 CHAPTER 3. A STEPPER BUILT WITH CONTINUATION MARKS

0 〈AV ~k(V), 〈〈app : K〉, ∅〉, 〈AE~k(E), f, 〈〉〉〉
1 〈(begin (output debug C) t1),

∅[t1 7→ V], 〈〈〉, ∅[debug 7→ V]〉, 〈AE~k(E), f, 〈〉〉〉
4 〈(output debug (list C C)),

∅[t1 7→ V], 〈〈app : K〉, ∅〉, 〈AE~k(E), f, 〈〉〉〉
23 〈〈false〉, 〈〈app : K〉, ∅〉, 〈AE~k(E), f, 〈〉〉〉
24 〈t1, ∅[t1 7→ V], 〈〈〉, ∅[debug 7→ V]〉, 〈AE~k(E), f, 〈〉〉〉
25 〈AV ~k(V), 〈〈〉, ∅〉, 〈AE~k(E), f, 〈〉〉〉
26 〈AE~k(E)[f 7→ V]〉

Figure 3.18: Steps taken in reduction of empty continuation with no further
definitions

Loading Lemma

An additional lemma addresses the loader, L.

Lemma 4 (Loading Lemma) For any program P containing keys ~k,

L(Annotate(P))7→→AS~k(L(P))

proof: The program P must be of the form (define f1 C1) (define f2 C2). . . .
By the definition of L and Annotate,

L(Annotate(P)) = 〈C ′, ∅, 〈〈〉, ∅〉,AD~k(〈∅, f1, 〈〈f2, C2〉, . . .〉〉)〉

where

C ′ = (w-c-m debug (list ’outermost
null
null
null
(list ’f1 (list ’cons ’f2 Q(C2)))
null)

(let ((t1 (w-c-m debug false
(begin (output debug (list (list ’expstep Q(C1) null)

(c-c-m debug k . . .)))
AC~k(C1)))))

(begin (output debug (list (list ’valstep t1) (c-c-m debug k . . .)))
t1)))

By the definition of AS and L,

3.4. CORRECTNESS 45

0 〈(w-c-m debug (list . . .) (let ((t1 C)) C)),
∅, 〈〈〉, ∅〉,AD~k(〈∅, f1, 〈〈f2, C2〉, . . .〉〉)〉

47 〈(let ((t1 (w-c-m debug C C))) (begin C C)),
∅, 〈〈〉, ∅[debug 7→ V]〉,AD~k(〈∅, f1, 〈〈f2, C2〉, . . .〉〉)〉

50 〈(w-c-m debug false (begin C C)),
∅, 〈〈app : K〉, ∅〉,AD~k(〈∅, f1, 〈〈f2, C2〉, . . .〉〉)〉

53 〈(begin (output debug C) AC~k(C1)),
∅, 〈〈app : K〉, ∅[debug 7→ V]〉,AD~k(〈∅, f1, 〈〈f2, C2〉, . . .〉〉)〉

56 〈(output debug (list C C)),
∅, 〈〈app : K〉, ∅〉,AD~k(〈∅, f1, 〈〈f2, C2〉, . . .〉〉)〉

80 〈AC~k(C1),
∅, 〈〈app : K〉, ∅[debug 7→ V]〉,AD~k(〈∅, f1, 〈〈f2, C2〉, . . .〉〉)〉

Figure 3.19: Steps taken in reduction of loaded annotated definitions

AS~k(L(P)) = 〈AC~k(C1), ∅,
〈〈app : 〈〈clo : 〈t1〉, C ′′, ∅〉〉, 〈〉, ∅, 〈〈〉, ∅[debug 7→ V ′]〉〉,
∅[debug 7→ 〈false〉]〉,

AD~k(〈∅, f1, 〈〈f2, C2〉, . . .〉〉)〉

where

C ′′ = (begin (output debug (list (list ’valstep t1) (c-c-m debug k . . .))) t1)

and V ′ is the result of evaluating the debug mark.
Figure 3.19 shows the key steps in the reduction of L(Annotate(P)). The

final step is equal to to AS~k(L(P)), and the lemma holds for this case.

Preservation of Cleanliness

Lemma 5 (Preservation of Cleanliness) If Clean(S) and S1 7→ S2, then
Clean(S2). Further, if Clean(P), then Clean(L(P)).

This lemma follows from the observation that evaluation and loading can
only reduce the set of identifiers appearing in a program or configuration.

Non-Interference Proofs

We now prove theorems 1 and 2 regarding the preservation of the result and
the output by the action of the annotator.

Proof of Theorem 1: First, we consider the left-to-right implication. Sup-
pose that Clean(P) and Eval(P) = S. By the definition of Eval, this means

46 CHAPTER 3. A STEPPER BUILT WITH CONTINUATION MARKS

that there is some sequence of configurations S1, . . . , Sn where S1 = L(P) and
Si 7→ Si+1 for 1 ≤ i < n and Sn = S.

Lemma 4 states that L(Annotate(P))7→→AS~k(L(P)) = AS~k(S1). Lemma 5
shows that Clean(S1).

Lemmas 1 and 5 now show through induction that for any i where 1 ≤ i < n,
AS~k(Si)7→→AS~k(Si+1).

Inspection of the definition of AS shows that if AS(S) is a final state, then
so is S.

Therefore, Eval(Annotate(P)) = AS~k(Sn).
To see the right-to-left implication, suppose that Eval(Annotate(P)) =

AS~k(S). Now, either Eval(P) is defined or it is not. If it is not defined, it must
be the case that evaluation of P diverges, and in this case lemma 1 tells us that
the evaluation of Annotate(P) must also diverge, and since the 7→ relation is
a function, this contradicts our claim that Eval(Annotate(P)) = AS~k(S). On
the other hand, suppose that Eval(P) exists and is some S′. In this case, the
left-to-right implication tells us that Eval(Annotate(P)) = AS~k(S′). Since 7→
is a function and so is Annotate, we know that S = S′, and we’re finished.

Proof Sketch of Theorem 2: Inspection shows that output on port
o occurs exactly on the reduction of configurations of the form 〈V, 〈〈out :
o, 〈K, M1〉〉,M0〉, D〉. Case analysis of the abstract machine and of configura-
tion annotation shows that the annotations of such configurations also produce
output on port o, and that the output emitted is AV ~k(V).

Conversely, if Si 7→ Si+1 and Si is not of the form shown above, then case
analysis of the abstract machine and of configuration annotation (along with
Lemma 1) show that the configuration AS~k(Si) reduces in one or more steps
to AS~k(Si+1) without producing output on port o.

Finally, observe that the reduction of L(Annotate(P)) reduces in one or
more steps to AS~k(S1) without producing output on any port other than debug .

Induction on the length of the length of the evaluation sequence n therefore
demonstrates thatAV ~k(Traceo(S1 7→→Sn)) = Traceo(L(Annotate(P))7→→AS~k(Sn))

Correctness

Furthermore, the system functions as a stepper. That is, applying the recon-
struction function to the sequence of debug values emitted by the annotated
program produces the same sequence of steps as the evaluation of the original
program. Theorem 3 states this precisely.

To prove the theorem, we use lemma 1 to divide the evaluation of the an-
notated program into segments corresponding to the steps taken by the source
program.

Figure 3.20 illustrates the timing and correspondence of debug outputs
with the steps taken by the original program, and shows why it is that the
final configuration in the source series appears only when it is an Expression
configuration. In particular, the debug output corresponding to an Expres-
sion configuration occurs in the segment preceding that annotated Expression

3.4. CORRECTNESS 47

init
� // //

��(
((

((
(e � // // v � // //

��
��
��

��(
((

((
(e � // // v � // //

��
��
��

v � // //

��
��
��

��(
((

((
(e � // //

��(
((

((
(e � // // v � // //

��
��
��

��(
((

((
(e � // // v

e v e v v e e v e

Figure 3.20: The correspondence between steps taken and steps emitted

Kind Outputs Contents

E → V 0 constants, lambda,c-c-m,variables
E → E 1 all expressions with subexpressions
V → E 1 cons2 group,

empty continuation with exps remaining
V → E 2 cons1 group, wcm group

V → Finished 1 empty continuation with no more expressions
V → Error 1 arity error, car/cdr/if errors
E → Error 0 bad reference to top-level variable

Figure 3.21: Transition Categories

configuration, whereas the debug output corresponding to a Value configura-
tion occurs in the segment following that annotated Value configuration. This
means, for example, that the segment leading from an annotated Expression
configuration to an annotated Value configuration emits no debug outputs, and
that the segment leading from a Value configuration to an Expression config-
uration emits two debug outputs.

The initial configuration in the source sequence must be an Expression
configuration, by the definition of L. This initial Expression configuration is
emitted by the annotated program by the sequence of configurations leading
from L(Annotate(P)) to AS~k(S1).

The result of reconstruction is a simple sequence of configurations, and
therefore does not contain the outputs produced by the original execution.
However, the earlier observation of the one-to-one correspondence between out-
puts and configurations of the form 〈V, 〈〈out : o, 〈K, M1〉〉,M0〉, D〉 shows that
these outputs may be recovered directly from the reconstructed sequence of
configurations.

We prove the theorem by considering each possible transition in the source
sequence, and showing that the segment that is its annotated counterpart pro-
duces the expected output. As in the proof of lemma 1, we can group tran-
sitions into classes. The grouping used for this proof is a coarsening of the
classes used in that proof. The table in figure 3.21 summarizes these larger
groups, and indicates which of the earlier classes fall into each group.

48 CHAPTER 3. A STEPPER BUILT WITH CONTINUATION MARKS

The proof proceeds by case analysis. All of the cases depend upon two
lemmas; one that states that reconstruction applied to the parent of a contin-
uation’s annotation recovers that continuation, and one that states that the
definitions may be recovered from the annotated continuation.

Lemma 6 (Continuation Reconstruction) For any K with keys ~k and any
D where Clean(K), and Clean(D),

RK(π~k′(〈K ′,M ′〉)) = K

where AK~k(K, D) = 〈. . . , 〈K ′,M ′〉〉 and k′ = 〈debug , k, . . .〉.

The proof of this lemma proceeds by induction on the length of the continu-
ation. In each case, the result of the annotation is a 〈K, M〉 where information
about each continuation frame is stored in a debug mark attached to the parent
continuation. Discarding the outermost continuation, extracting these marks
with the π function and applying RK to the result yields the original continu-
ation pair.

Lemma 7 (Definition Reconstruction) For any K with keys ~k and any D
where Clean(K) and Clean(D), and any M at all,

RD(π~k′(〈AK~k(K, D),M〉)) = D

where k′ = 〈debug , k, . . .〉.

The definitions passed to AK are stored in the outermost continuation. The
function RD retrieves the definitions stored in a continuation by recurring on
the continuation’s mark list.

Given these lemmas, the cases in the proof of theorem 3 are quite similar
to each other. We take as a representative the value configuration that has
a topmost wcm continuation frame. This case illustrates the output of both
Value and Expression configurations. Figure 3.13, from the proof of the earlier
simulation lemma, serves to illustrate the key steps in this reduction segment.

As before, the definition of the abstract machine shows that

S1 = 〈V, 〈〈wcm : k, C,E, 〈K, M〉〉, ∅〉, D〉 7→ 〈C, E, 〈K, M [k 7→ V]〉, D〉 = S2

By the definition of annotation and the abstract machine, the corresponding
segment AS~k(S1)7→→AS~k(S2) contains exactly two configurations that produce
output. We must show that the first one produces an output that goes by
reconstruction to S1, and that the second one produces an output that goes by
reconstruction to S2.

By the definition of annotation and the abstract machine, the first such
configuration is

S′
1 = 〈V1,

〈〈out : debug,
〈〈app : 〈〈clo : 〈tdc〉, (w-c-m k t1 E~k(C)), E〉〉, 〈〉, ∅,
〈AK~k(K, D),AE~k(M)[debug 7→ V2]〉〉, ∅〉〉, ∅〉,AD~k(D)〉

3.4. CORRECTNESS 49

where V2 is the current debug mark, and

V1 = 〈pair : 〈pair : 〈sym : valstep〉, 〈pair : AV ~k(V), 〈null〉〉〉,
〈pair : π~k′(〈AK~k(K, D),AE~k(M)[debug 7→ V3]〉),
〈null〉〉〉

where

V3 = (list ’wcm
null
(list ’x x) . . . ;; x ∈ fv(C)
null
(list ’k Q(C))
null)

As before, we have used the input syntax, including the list abbreviation, to
make this value more readable. By the earlier observation, the value V1 appears
on the debug output port. By the definition of reconstruction,

RS(V1) = 〈A−1
V (AV ~k(V)), 〈RK(π~k′(〈AK~k(K, D),AE~k(M)[debug 7→ V3]〉)), ∅〉,

RD(π~k′(〈AK~k(K, D),AE~k(M)[debug 7→ V3]〉))
= 〈V, 〈RK(π~k′(〈AK~k(K, D),AE~k(M)[debug 7→ V3]〉)), ∅〉,

RD(π~k′(〈AK~k(K, D),AE~k(M)[debug 7→ V3]〉))
= 〈V, 〈RK(π~k′(〈AK~k(K, D),AE~k(M)[debug 7→ V3]〉)), ∅〉, D〉
= 〈V, 〈RK(cons (cons (list ’debug V3) φ~k′(AE~k(M)))

π~k′(〈K1,M1〉)), ∅〉, D〉
where AK~k(K, D) = 〈. . . , 〈K1,M1〉〉

= 〈V, 〈〈wcm : k, C, E, 〈RK(π~k′(〈K1,M1〉)),RE(φ~k′(AE~k(M)))〉〉, ∅〉, D〉
= 〈V, 〈〈wcm : k, C, E, 〈RK(π~k′(〈K1,M1〉)),M〉〉, ∅〉, D〉
= 〈V, 〈〈wcm : k, C, E, 〈K, M〉〉, ∅〉, D〉

So the result of reconstruction is the desired configuration S1.

The second output configuration is

S′
2 = 〈V1,

〈〈out : debug,
〈〈app : 〈〈clo : 〈tdc〉,AC~k(C), E〉〉, 〈〉, ∅,
〈AK~k(K, D),AE~k(M)[k 7→ AV ~k(V)][debug 7→ 〈false〉]〉〉, ∅〉〉, ∅〉,

AD~k(D)〉

where

50 CHAPTER 3. A STEPPER BUILT WITH CONTINUATION MARKS

V1 = (list (list ’expstep

Q(C)
(list ’x x) . . .) ;; for x ∈ fv(C)

π~k′(〈AK~k(K, D),AE~k(M)[k 7→ AV ~k(V)][debug 7→ 〈false〉]〉))
= (list (list ’expstep

Q(C)
(list ’x x) . . .) ;; for x ∈ fv(C)

(cons (cons (list ’debug 〈false〉)
(cons (list ’k AV ~k(V))

φ~k′(AE~k(M))))
π~k′(〈K1,M1〉)))

where
AK~k(K, D) = 〈. . . 〈K1,M1〉〉

By the definition of reconstruction,

RS(V1) = 〈C,E, 〈RK(〈K1,M1〉),RE(cons (list ’k AV ~k(V)) φ~k′(AE~k(M)))〉,
RDπ~k′(〈K1,M1〉)〉

= 〈C,E, 〈RK(〈K1,M1〉),M [k 7→ V]〉,RDπ~k′(〈K1,M1〉)〉
= 〈C,E, 〈K, M [k 7→ V]〉,RDπ~k′(〈K1,M1〉)〉
= 〈C,E, 〈K, M [k 7→ V]〉, D〉

So the result of reconstruction is the desired configuration S1.
This concludes the sketch of the proof of theorem 3.

3.5 Notes on Proof Methods

Each of the cases in the principal lemmas above consists of many steps in
an evaluator. In order to prevent the errors that are the hallmark of similar
hand-generated proofs, we implemented a simple evaluator in OCAML [32]
for the language of the model, extended with certain generalizations, that can
perform computation on incomplete program terms. In essence, this program
is an ad-hoc theorem prover, designed for a particular language.

Appendix A shows some of the key pieces of this evaluator, including the
datatype definitions and the language’s generalized evaluator.

The datatype definitions for the language extend the definitions given in
section 3.2 with ANYEXP and ANYVAL variants that represent arbitrary

3.6. THE PRAGMATICS OF A STEPPER 51

expressions and values, respectively. We can use these variants to express
partially specified terms such as (if A B C).

Furthermore, each expression may have a label that represents knowledge
about that term necessary to allow the proof step to proceed. For instance,
after proving lemma 2, we may label terms that are known to be the result
of a “quote”. Then, we extend the evaluator with a rule stating that such
expressions always converge, and may safely be replaced with a fresh ANYVAL.

By interactively extending the evaluator with labels that correspond to
lemmas that we have proven separately, we may generate proof steps in a
systematic way, ruling out a large class of errors.

3.6 The Pragmatics of a Stepper

The model of section 3.2 represents the kernel of our stepper. DrScheme’s
stepper is implemented with an annotation based on the one described, and is
an entirely unprivileged program.

Adapting the model for the desired implementation, however, requires sev-
eral adjustments. Most significantly, our stepper displays a series of steps in
an algebraic reduction semantics, rather than a register machine. Additionally,
the stepper must deal with errors, opaque values, unannotated library code and
Scheme macros. Finally, our implementation makes use of several simple but
significant optimizations to reduce the memory consumed by the stepper. In
the following subsections, we explain each of these differences between the
model and our implementation.

Algebraic Reduction Semantics

We believe that the best evaluation models to use with beginning programmers
are those that highlight the equivalence of program terms and the algebraic
nature of program reduction. For this reason, our stepper displays a series of
steps in an algebraic reduction semantics, rather than a sequence of machine
configurations.

Fortunately, Flatt and Felleisen have demonstrated the correspondence be-
tween the steps taken in a βv reduction semantics and the steps taken by a
register machine of the kind this chapter describes [15]. The stepper uses this
correspondence to map the steps shown by reconstruction back to the terms in
a reduction sequence. This means that every step the user sees is a complete
program.

The sequence of steps taken by a register machine is longer than the chain of
steps validated by the reduction semantics. This is because many of the trans-
formations in the register machine—the reduction of the syntactic term false
to the value 〈false〉, for instance—correspond to the identity transformation in
the reduction semantics. The stepper filters out such steps.

52 CHAPTER 3. A STEPPER BUILT WITH CONTINUATION MARKS

Exceptions

In our model, a program that causes an error is elaborated into a program that
causes the same error. In our implementation, we do not want the program’s
defect to preclude further debugging. The annotated program therefore inter-
cepts uncaught exceptions, and displays them to the user as a final step in the
reduction sequence. Since the stepper stores all steps as they are generated,
the user may step backward to determine the exception’s cause.

Opaque Values

Since the stepper is an ordinary program and has no privileged access to com-
piler or run-time data, closures are effectively opaque; there is no run-time
operation that accepts a closure and returns its source code or the bindings it
is closed over. Rather than compromise the division between stepper and com-
piler or disallow access entirely, the stepper elaborates lambda expressions so
that these items’ source texts and bindings appear in a weak hash table whose
keys are the values themselves.7 At reconstruction time, the stored records
may then be retrieved for display.

Unannotated Code

Source programs often interact with other program components. These com-
ponents may consist of large bodies of code, may be available only in compiled
form, or may be written in another language. In this situation, the debugger
cannot hope to annotate all code involved in a computation.

In fact, the debugger might stop working altogether; a debugger based on
an annotation that changes the calling conventions, for example, would simply
fail if the annotated program were näıvely linked to unannotated code.

Fortunately, an annotation based on continuation marks fails gracefully.
On the one hand, most library procedures behave as atomic primitives; in the
stepper’s reconstruction, the step preceding the call is followed by the result
of the call, and the effect is that these library procedures implicitly extend the
source language. On the other hand, some higher-order primitives may call
annotated code. In this case, reconstruction must proceed with incomplete
information. In these cases, reconstruction simply shows gaps in the program
context.

Scheme Macros and Little Languages

DrScheme contains a hygienic source-correlating macro system. This means
that users can easily extend the source language with new forms, or change the
meaning of existing ones. It also means that before evaluation, every program

7Values reachable only through references in weak hash tables may be collected; this
guarantees that the hash table itself does not affect the asymptotic memory behavior of the
program.

3.7. RELATED WORK 53

is expanded until it matches a core syntax. So, for instance, Scheme’s cond
form is expanded into a series of ifs.

Rather than try to accommodate every new macro added to the system, our
stepper operates on elements of the core language, after the source program is
fully expanded. This is a robust solution that accommodates the addition of
arbitrary macros to the system.

This means that the stepper can in principle be applied to any language
built on top of MzScheme. We explore this further in our work on Little
Languages [10, 8].

The penalty for this decision is that reconstruction produces terms in the
core language, rather than in the extended language. In a program that makes
extensive use of macros, or a program written by a user who is not aware of
the language’s core syntax, the output of reconstruction may be confusing.

Fortunately, the source-correlation of the syntax system means that it is
possible to translate these terms back into source syntax, in the cases where
such translations are known. In DrScheme’s teaching languages, for instance,
a defined set of macros provide additional error-checking for beginners, and
users may not extend the language themselves.

Little Languages

The Content of Marks

Two simple annotations vastly reduce the memory used by annotated programs
in our implementation.

Firstly, the compiler and the execution of the compiled code share the same
heap. This means that the annotator can store references to the source code
in the source code itself, rather than encoding source code using the quoting
function Q as we do in the model. Furthermore, these references do not require
evaluation, as they are already values. So the cost of encoding and evaluating
these quoted source terms is eliminated.

Secondly, the implementation also reduces the size of marks by storing only
those bindings that are not known to occur in an enclosing mark. So, given a
source program of the form (cons (cons a b) c), the outer cons will have a
mark that captures the value of b. This means that the mark on the inner cons
does not need to capture the value of b.

3.7 Related Work

The idea of elaborating a program in order to observe its behavior is a familiar
one. Early systems included BUGTRAN [18] and EXDAMS [1] for FORTRAN.
More recent applications of this technique to higher-order languages include
Tolmach’s smld [44], Kellomaki’s PSD [27], and several projects in the lazy FP
community [25, 36, 39, 42]. None of these, however, addressed the correctness
of the tool—not only that the transformation preserves the meaning of the

54 CHAPTER 3. A STEPPER BUILT WITH CONTINUATION MARKS

program, but also that the information divulged by the elaborated program
matches the intended purpose.

Indeed, work on modeling the action of programming environment tools is
sparse. Bernstein and Stark [4] put forward the idea of specifying the semantics
of a debugger. That is, they specify the actions of the debugger with respect
to a low-level machine. We extend this work to show that the tool preserves
the semantics and also performs the expected computation.

Kishon, Hudak, and Consel [31] study a more general idea than Bernstein
and Stark. They describe a theoretical framework for extending the seman-
tics of a language to include execution monitors. Their work guarantees the
preservation of the source language’s semantics. Our work extends this (albeit
with a loss of generality) with a proof that the information output by the tool
is sufficient to reconstruct a source expression.

Bertot [5] describes a semantic framework for relating an intermediate state
in a reduction sequence to the original program. Put differently, he describes
the semantic foundation for source tracking. In contrast, we exploit a practical
implementation of source tracking by Matthew Flatt for our implementation of
the stepper. Bertot’s work does not verify a stepper but simply assumes that
the language evaluator is a stepper.

Chapter 4

Stack Inspection implemented
with Continuation Marks

This chapter looks at the application of continuation marks to stack inspection
for security reasons. Specifically, it shows how the stack inspection model of
Fournet and Gordon [22] may be implemented as a tail-calling evaluator, using
a register machine with a variant of continuation marks.1

4.1 Stacks, Security, and Tail Calls

Over the last ten years, programming language implementors have spent sig-
nificant effort on security issues. This effort takes many forms; one is the
implementation of a strategy known as stack inspection [46]. It starts from the
premise that trusted components may authorize potentially insecure actions
for the dynamic extent of some expression, provided that all intermediate calls
are made by and to trusted code. When an insecure action is requested, these
trusted components must inspect the current stack frames to ensure that it
was properly authorized.

In its conventional implementation, stack inspection is incompatible with
a traditional language semantics, because it clashes with the well-established
idea of modeling function calls with a β or βv reduction [37]. A β reduc-
tion replaces a function’s application with the body of that function, where
the application’s arguments replace the function’s parameters. In a language
with stack inspection, a β or βv reduction thus disposes of information that is
necessary to evaluate the security primitives.

For this reason, Fournet and Gordon [22] model function calls with a non-
standard β reduction. To be more precise, β does not hold as an equation for
source terms. Instead, abstraction bodies are wrapped with context-building
primitives. Unfortunately, this formalization inhibits a transformation of this
semantics into a tail-calling implementation. Fournet and Gordon recognize

1This paper appeared in an earlier form in Transactions on Programming Languages and
Systems [7], and before that at the European Symposium on Programming [6].

55

56
CHAPTER 4. STACK INSPECTION IMPLEMENTED WITH

CONTINUATION MARKS

this fact and state that “[S]tack inspection profoundly affects the semantics of
all programs. In particular, it invalidates [. . .] tail call optimizations [22].”

This understanding of the stack inspection protocol also pervades the im-
plementation of existing run-time systems. The Java design team, for example,
chose not to provide a tail-calling implementation in part because of the per-
ceived incompatibility between tail-calling and stack inspection.2 The .NET
effort at Microsoft provides a runtime system that is properly tail-calling—
except in the presence of security primitives, which disable it. Microsoft’s
documentation [34] states that “[t]he current frame cannot be discarded when
control is transferred from untrusted code to trusted code, since this would
jeopardize code identity security.”

Wallach et al. [47] suggest an alternate implementation of stack inspection
that might accommodate tail-calling. They add an argument to each function
call that represents the security context as a statement in their belief logic.
Statements in this belief logic can be unraveled to determine whether an oper-
ation is permitted. However, the details of their memory behavior are opaque.
In particular, they do not attempt to present a model in which memory usage
can be analyzed.

Our work fills the gap between Fournet and Gordon’s formal model and
Wallach’s alternative implementation of stack inspection. Specifically, our se-
curity model exploits a novel mechanism for lightweight stack inspection [21],
derived from continuation marks. We demonstrate the equivalence between our
model and Fournet and Gordon’s, and prove our claims of proper tail-calling.
More precisely, our abstract implementation can transform all tail calls in the
source program into instructions that do not consume any stack (or store)
space. Moreover, our abstract implementation represents a relatively minor
change to the models used by current implementations, suggesting that these
implementations might accommodate tail-calling with minimal effort.

We proceed as follows. First, we derive a CESK machine from Fournet
and Gordon’s semantics. Second, we develop a different, but extensionally
equivalent CESK machine that uses a variant of continuation marks. Third,
we show that our machine uses strictly less space than the machine derived from
Fournet and Gordon’s semantics and that our machine uses as much space as
Clinger’s canonical tail-calling CESK machine [11].

The chapter consists of nine sections. The second section introduces the λsec

language: its syntax, semantics, and security mechanisms. The third section
shows how a pair of tail calls between system and applet code can allocate an
unbounded amount of space. In the fourth section, we derive an extensionally
equivalent CESK machine from Fournet and Gordon’s semantics; in the fifth
section, we modify this machine so that it implements all tail calls in a properly
optimized fashion. The sixth section provides a precise analysis of the space
consumption of these machines and shows that our new machine is indeed tail-
calling. In the seventh section, we discuss the extension of our models for λsec

2Private communication between Guy Steele and Matthias Felleisen at POPL 1996

4.2. THE λSEC LANGUAGE 57

to the richer environments of existing languages. The last two sections place
our work into context.

4.2 The λsec Language

Fournet and Gordon work from the λsec-calculus [38, 41]. This calculus is
a simple model of a programming language with security annotations. They
present two languages: a source language, in which program components are
written, and a target language, which includes an additional form for security
annotations. A trusted annotator performs the translation from the source to
the target, annotating each component with the appropriate permissions.

In this security model, all code is statically annotated with a given set
of permissions, chosen from a fixed set P. A program component that has
permissions R may choose to enable some or all of these permissions. The set of
enabled permissions at any point during execution is determined by taking the
intersection of the permissions enabled for the caller and the set of permissions
contained in the callee’s annotation. That is, a permission is considered enabled
only if two conditions are met: first, it must have been legally and explicitly
enabled by some calling procedure, and second, all intervening callers must
have been annotated with this permission.

A program component consists of a set of permissions and a λ-expression
from the source language, (Ms). This language adds three expressions to the
basic call-by-value λ-calculus. The test expression checks to see whether a given
set of permissions is currently enabled, and branches based on that decision.
The grant expression enables a privilege, provided that the context endows
it with those permissions. Finally, the fail expression causes the program to
halt immediately, signaling a security failure. Our particular source language
also changes the traditional presentation of the λ-calculus by adding an ex-
plicit name to each abstraction so that we get concise definitions of recursive
procedures.

Syntax

C ∈ Components = 〈R, λfx.Ms〉
M, N = x | M N | λfx.M | grant R in M

| test R then M else N | fail | R[M]

x ∈ Identifiers
R ⊆ P

V ∈ Values = x | λfx.M

The target language (M) adds a framing expression to this source language
(underlined in the grammar). A frame specifies the permissions of a component
in the source text. To ensure that these framing expressions are present as the
program is evaluated, we translate source components into target components
by annotating the component’s source term with its permissions. The anno-
tator below performs this annotation, and simultaneously ensures that a grant

58
CHAPTER 4. STACK INSPECTION IMPLEMENTED WITH

CONTINUATION MARKS

expression refers only to those permissions to which it is entitled by its source
location.

Annotator A : 2P ×Ms → M

A〈R, [[x]]〉 = x
A〈R, [[λfx.M]]〉 = λfx.R[A〈R, [[M]]〉]
A〈R, [[M N]]〉 = A〈R, [[M]]〉 A〈R, [[N]]〉

A〈R, [[grant S in M]]〉 = grant S ∩R in A〈R, [[M]]〉
A〈R, [[test S then M else N]]〉 = test S then A〈R, [[M]]〉 else A〈R, [[N]]〉

A〈R, [[fail]]〉 = fail

The annotator A consumes two arguments: the set of permissions appro-
priate for the source, and the source code; it produces a target expression. It
commutes with all expression constructors except for λ and grant. For a λ
expression, it adds a frame expression wrapping the body. For a grant ex-
pression, it replaces the permissions S that the expression specifies with the
intersection S∩R. So, if a component containing the expression grant {a, b} in E
were annotated with the permissions {b, c}, the resulting expression would read
grant {b} in E′, where E′ represents the recursive annotation of E.

We adapt Fournet and Gordon’s semantics to our variant of λsec. Evalua-
tion of programs is specified using a reduction semantics based on evaluation
contexts [16]. In such a semantics, every expression is divided into an evalu-
ation context containing a single hole (denoted by •), and a redex. An eval-
uation context is composed with a redex by replacing the context’s hole with
the redex. The choice of evaluation contexts determines where evaluation can
occur, and typically the evaluation contexts are chosen to enforce deterministic
evaluation; that is, each expression has a unique decomposition into context
and redex. Reduction rules in such a semantics take the form “E[f] 7→ E[g],”
where f is a redex, g is its contractum, and E is the context (which may be
observable, as for instance in the test rule).

Contexts
E = • | E M | V E | grant R in E | R[E]

Reduction Rules

E[λfx.M V] 7→ E[[λfx.M/f][V/x]M]
E[R[V]] 7→ E[V]

E[grant R in V] 7→ E[V]

E[test R then M else N] 7→

E[M] if OK〈R, [[E]]〉
E[N] otherwise

E[fail] 7→ fail

4.2. THE λSEC LANGUAGE 59

where
OK〈∅, [[E]]〉
OK〈R, [[•]]〉

OK〈R, [[E[• M]]]〉 iff OK〈R, [[E]]〉
OK〈R, [[E[V •]]]〉 iff OK〈R, [[E]]〉
OK〈R, [[E[S[•]]]]〉 iff R ⊆ S and OK〈R, [[E]]〉

OK〈R, [[E[grant S in •]]]〉 iff OK〈(R− S), [[E]]〉

This semantics is an extension of a standard call-by-value reduction semantics.
The hole and the two application contexts are standard and enforce left-to-right
evaluation of arguments. The reduction rule for applications is also standard.
The added contexts and reduction rules for frame and grant expressions are
largely transparent; evaluation may proceed inside of either form, and each
one disappears when its expression is a value. These expressions affect the
evaluation only when a test expression occurs as a redex. In this case, the
result of the reduction depends on the OK predicate, which is applied to the
current context and the desired permissions.

The OK predicate recurs over the evaluation context from the inside out,
succeeding either when the permissions remaining to check are empty or when
the context is exhausted.3 The OK predicate commutes with both kinds of
application context. In the case of a frame annotation, the desired permissions
must occur in the frame, and the predicate must succeed recursively. Finally,
a grant expression removes all permissions it grants from the set of those that
need to be checked.

Finally, the Eval function determines the meaning of a source program. A
program consists of a list of components. Evaluation is performed by annotat-
ing each λ-expression with the permissions of its component, and combining all
such expressions into a single application. This application uses the traditional
abbreviation of a curried application as a single one.

Definition 1 (Eval)

Eval(C, . . .) = V if (A(C) · · ·) ∗7→ V

Since the first component is applied to the rest, it is presumed to represent
the runtime system, or at least a linker. Eval is undefined for programs that
diverge or enter a stuck state.

Minor Differences The semantics we present differs from that of Fournet
and Gordon in three ways. First, it reduces programs containing fail to a final
fail state in one step, rather than propagating the fail upward one expression at
a time. We consider this difference trivial and ignore it. Second, our language
includes a named lambda, to simplify the presentation of recursive examples.

3In fact, success on an empty permission set may be derived from the other rules in the
definition; the direct statement of this is nevertheless included to simplify understanding.

60
CHAPTER 4. STACK INSPECTION IMPLEMENTED WITH

CONTINUATION MARKS

Since we present an untyped language, a recursive function always has an
equivalent form as an application of the Y combinator. Third, our semantics
replaces a run-time check in Fournet and Gordon’s semantics with a static
check. Appendix B.1 presents a proof of the equivalence of our evaluator and
theirs.

4.3 Tail-calling

Chapter 2 details the argument for the importance of tail-calling evaluators.
Unfortunately, languages such as Java have no tail-calling implementations,
and Microsoft’s CLR supports tail-calling only in the absence of stack inspec-
tion.

At first glance, tail call optimization seems inherently incompatible with
stack inspection. To see this, consider a mutually recursive loop between applet
and library code.

Abbreviations

UserFn
∆
= λuser sys.sys user

SystemFn
∆
= λsysuser .user sys

A〈RA, [[UserFn]]〉 = λuser sys.RA[sys user]
A〈RS, [[SystemFn]]〉 = λsysuser .RS[user sys]

Reduction (w/ Annotations)

A〈RA, [[UserFn]]〉 A〈RS, [[SystemFn]]〉
7→ RA[A〈RS, [[SystemFn]]〉 A〈RA, [[UserFn]]〉]

7→ RA[RS[A〈RA, [[UserFn]]〉 A〈RS, [[SystemFn]]〉]]
7→ RA[RS[RA[A〈RS, [[SystemFn]]〉 A〈RA, [[UserFn]]〉]]]

7→ RA[RS[RA[RS[A〈RA, [[UserFn]]〉 A〈RS, [[SystemFn]]〉]]]]
. . .

Reduction (w/o Annotations)

UserFn SystemFn
7→ SystemFn UserFn
7→ UserFn SystemFn
7→ SystemFn UserFn
7→ UserFn SystemFn
. . .

This program consists of two copies of a mutually recursive loop function,
one a ‘user’ component and one a ‘system’ component. Each takes the other as
an argument, and then calls it, passing itself as the sole argument. To simplify
the presentation of the looping functions, we introduce abbreviations for the
user and system procedures.

This program is a toy example, but it represents the core of many interac-
tions between user and system code. For instance, any co-routine-style inter-

4.4. AN ABSTRACT MACHINE FOR λSEC 61

action between producer and consumer exhibits this behavior—unfortunately,
programmers are forced to avoid this powerful and natural style in Java pre-
cisely because of the lack of tail-calling. Perhaps the most common examples
of this kind of interaction occur in OO-style traversals of data structures, such
as the above-mentioned patterns.

The first reduction sequence in the figure shows how λsec evaluates the given
program, where the two procedures are annotated with their permissions. The
context quickly grows without bound in this example. A functional program-
mer would expect to see a sequence more like the second one. This series is
also a reduction sequence in λsec, but one that is obtained by evaluating the
program’s pure source, without the security annotations.

As Fournet and Gordon point out in their paper, all is not lost. They
introduce an additional reduction into their abstract machine that explicitly
removes a frame before performing a call. Unfortunately, as they point out,
indiscriminate application of this rule changes the semantics of the language.
They address this problem with a partial list of circumstances in which the
reduction is legal. By casting tail-calling as a specific reduction rather than
a property of an abstract machine, Fournet and Gordon fail to realize that a
fully tail-recursive implementation of the language is possible. This outlook is
similar to the one taken by Microsoft’s CLR, in which a non-allocating tail call
requires a dynamic check to ensure that no security information is lost.

4.4 An Abstract Machine for λsec

Following Clinger’s work on defining tail-optimized languages via space com-
plexity classes [11], we first reformulate the λsec semantics as a CESK ma-
chine [16, 15]. We can then measure the space consumed by machine configu-
rations, programs, and machines. Furthermore, we can determine whether the
space consumption function of an implementation is in the same complexity
class as Clinger’s machine.

The fg machine

We begin with a direct translation of λsec’s semantics into a CESK machine,
which we call “frame-generating” or fg (see figure 4.1).

A CESK abstract machine takes its names from its four registers: the con-
trol string, the environment, the store, and the continuation. It is quite similar
to the CEKD machine of chapter 3. It is missing the D register—a λsec program
does not contain top-level definitions—and it has gained a store, S.4

The derivation of a CESK machine from a reduction semantics is straight-
forward [15]. In particular, the proof of equivalence of the two models is a
refinement of Felleisen and Flatt’s proof, which proceeds by a series of trans-
formations from a simple reduction semantics to a register machine. At each

4The store in our model is necessitated by Clinger’s model of tail call optimization; a
machine with no store can grow without bound due to copying.

62
CHAPTER 4. STACK INSPECTION IMPLEMENTED WITH

CONTINUATION MARKS

The FG Machine

Configurations = 〈M, ρ, σ, κ〉 | 〈V, ρ, σ, κ〉 | 〈V, σ〉 | fail
Final Configurations = 〈V, σ〉 | fail

κ ∈ Continuations = 〈〉 | 〈push : M, ρ, κ〉 | 〈call : V, κ〉
| 〈frame : R, κ〉 | 〈grant : R, κ〉

V ∈ Values = 〈closure : M, ρ〉
ρ ∈ Environments = Identifiers ⇀ Locations

α, β ∈ Locations
σ ∈ Stores = Locations ⇀ Values

emptyfg = 〈〉

〈λfx.M, ρ, σ, κ〉 7→fg 〈〈closure : λfx.M, ρ〉, ρ, σ, κ〉
〈x, ρ, σ, κ〉 7→fg 〈σ(ρ(x)), ρ, σ, κ〉

〈M N, ρ, σ, κ〉 7→fg 〈M, ρ, σ, 〈push : N, ρ, κ〉〉
〈R[M], ρ, σ, κ〉 7→fg 〈M, ρ, σ, 〈frame : R, κ〉〉

〈grant R in M, ρ, σ, κ〉 7→fg 〈M, ρ, σ, 〈grant : R, κ〉〉

〈test R then M else N, ρ, σ, κ〉 7→fg

〈M, ρ, σ, κ〉 if OKfg〈R, [[κ]]〉
〈N, ρ, σ, κ〉 otherwise

〈fail, ρ, σ, κ〉 7→fg fail

〈V, ρ, σ, 〈〉〉 7→fg 〈V, σ〉
〈V, ρ, σ, 〈push : M, ρ′, κ〉〉 7→fg 〈M, ρ′, σ, 〈call : V, κ〉〉

〈V, ρ, σ, 〈call : V ′, κ〉〉 7→fg 〈M, ρ′[f 7→ β][x 7→ α], σ[α 7→ V][β 7→ V ′], κ〉
if V ′ = 〈closure : λfx.M, ρ′〉 and α, β 6∈ dom(σ)

〈V, ρ, σ, 〈frame : R, κ〉〉 7→fg 〈V, ρ, σ, κ〉
〈V, ρ, σ, 〈grant : R, κ〉〉 7→fg 〈V, ρ, σ, κ〉

〈V, ρ, σ[β, . . . 7→ V ′, . . .], κ〉 7→fg 〈V, ρ, σ, κ〉
if {β, . . .} is nonempty and
β, . . . do not occur in V , ρ, σ, or κ

where
OKfg〈∅, [[κ]]〉
OKfg〈R, [[〈〉]]〉

OKfg〈R, [[〈push : M, ρ, κ〉]]〉 iff OKfg〈R, [[κ]]〉
OKfg〈R, [[〈call : V, κ〉]]〉 iff OKfg〈R, [[κ]]〉

OKfg〈R, [[〈frame : R′, κ〉]]〉 iff R ⊆ R′ and OKfg〈R, [[κ]]〉
OKfg〈R, [[〈grant : R′, κ〉]]〉 iff OKfg〈R−R′, [[κ]]〉

Figure 4.1: The FG Machine

4.4. AN ABSTRACT MACHINE FOR λSEC 63

step, we must strengthen the induction hypothesis by adding a claim about the
value of the OK predicate when applied to the current context.

As a result, most of the steps that can be taken in such a machine corre-
spond either to the reductions of the source semantics or to the mechanical
identification of the next expression to be reduced. The first group of reduc-
tions in figure 4.1 contains those that refocus the evaluation on subexpressions
or translate expressions into their corresponding values. The second, comple-
mentary group contains those that fire when a value shows up as the control
string, and these correspond both to changes of focus in the control string and
to actual reductions. Finally, a machine with a store must also model garbage
collection, if its configurations are to be used in space computations. The final
reduction therefore provides garbage collection.

To enable comparisons between different machines, the Evalx function is
abstracted over a transition relation and an empty context. Applying this
generalized evaluator to 7→fg and emptyfg yields the evaluation function Evalfg.

In order to ensure that Eval and Evalfg are indeed the same function, the
Evalx function must employ “load” and “unload” functions. The “load” func-
tion, L, coerces the target program to a valid machine configuration. The
“unload” function, U , recursively substitutes values bound in the environment
for the variables that represent them.

Definition 2 (Evalx)

Evalx(C, . . .) = U(V, σ) if Lx(C, . . .) ∗7→x 〈V, σ〉

where

Lx(〈λfx.Mu0, R0〉, . . .) = 〈(A〈R0, [[λfx.Mu0]]〉 . . .), ∅, ∅, emptyx〉

and
U(〈closure : M, {〈x1, α1〉, . . . , 〈xn, αn〉}〉, σ) =

[U(σ(α1))/x1] . . . [U(σ(αn))/xn]M

Theorem 4 (Machine Fidelity) For all (C, . . .),

Evalfg(C, . . .) = V iff Eval(C, . . .) = V

The proof proceeds by induction on the length of a reduction sequence.

The fg machine is not tail-calling

To see that this implementation of the λsec language is not tail-calling, we show
the reduction sequence in the fg machine for the program from section 4.3, and
verify that the space taken by the configuration is growing without bound.

UserClo
∆
= 〈closure : λuser sys.A〈RA, [[UserFn]]〉, ∅〉

SystemClo
∆
= 〈closure : λsysuser .A〈RS, [[SystemFn]]〉, ∅〉

ρ0
∆
= [sys 7→ α, user 7→ β]

σ0
∆
= [α 7→ SystemClo, β 7→ UserClo]

64
CHAPTER 4. STACK INSPECTION IMPLEMENTED WITH

CONTINUATION MARKS

〈A〈RA, [[UserFn]]〉 A〈RS, [[SystemFn]]〉, ∅, ∅, 〈〉〉 (0 frames)
7→fg 〈A〈RA, [[UserFn]]〉, ∅, ∅, 〈push : A〈RS, [[SystemFn]]〉, ∅, 〈〉〉〉
7→fg 〈UserClo, ∅, ∅, 〈push : A〈RS, [[SystemFn]]〉, ∅, 〈〉〉〉
7→fg 〈A〈RS, [[SystemFn]]〉, ∅, ∅, 〈call : UserClo, 〈〉〉〉
7→fg 〈SystemClo, ∅, ∅, 〈call : UserClo, 〈〉〉〉
7→fg 〈RA[sys user], ρ0, σ0, 〈〉〉
7→fg 〈sys user , ρ0, σ0, 〈frame : RA, 〈〉〉〉 (1 frame)
7→fg 〈sys, ρ0, σ0, 〈push : user , ρ0, 〈frame : RA, 〈〉〉〉〉
7→fg 〈SystemClo, ρ0, σ0, 〈push : user , ρ0, 〈frame : RA, 〈〉〉〉〉
7→fg 〈user , ρ0, σ0, 〈call : SystemClo, 〈frame : RA, 〈〉〉〉〉
7→fg 〈UserClo, ρ0, σ0, 〈call : SystemClo, 〈frame : RA, 〈〉〉〉〉
27→fg 〈RS[user sys], ρ0, σ0, 〈frame : RA, 〈〉〉〉
7→fg 〈user sys, ρ0, σ0, 〈frame : RS, 〈frame : RA, 〈〉〉〉〉 (2 frames)
7→fg 〈user , ρ0, σ0, 〈push : sys, ρ0, 〈frame : RS, 〈frame : RA, 〈〉〉〉〉〉
7→fg 〈UserClo, ρ0, σ0, 〈push : sys, ρ0, 〈frame : RS, 〈frame : RA, 〈〉〉〉〉〉
7→fg 〈sys, ρ0, σ0, 〈call : UserClo, 〈frame : RS, 〈frame : RA, 〈〉〉〉〉〉
7→fg 〈SystemClo, ρ0, σ0, 〈call : UserClo, 〈frame : RS, 〈frame : RA, 〈〉〉〉〉〉
77→fg 〈UserClo, ρ0, σ0, (3 frames)

〈call : SystemClo, 〈frame : RA, 〈frame : RS, 〈frame : RA, 〈〉〉〉〉〉〉
77→fg 〈SystemClo, ρ0, σ0, (4 frames)

〈call : UserClo, 〈frame : RS, 〈frame : RA, 〈frame : RS, 〈frame : RA, 〈〉〉〉〉〉〉〉
. . .

4.5 An Alternative Implementation

How security inspections really work

A close look at λsec shows that frame (`[•]) and grant contexts affect the
computation only when they are observed by a test expression. That is, a
program with no test expressions may be simplified by removing all frame and
grant expressions without changing its meaning. Furthermore, the observations
possible with the test expression are limited by the OK function.

In particular, any sequence of frame and grant expressions may be collapsed
into a canonical table that provides a partial map from the set of permissions
to one of two conditions: ‘no’, indicating that the permission is not granted
by the sequence, and ‘grant’, indicating that the permission is granted (and
legally so) by some grant frame in the sequence.

To derive update rules for this table, we consider evaluation of the OK
function as the recognition of a context-free grammar over the alphabet of
frame and grant expressions. We start by simplifying the model to one with
a single permission. Then each frame is either empty or contains the desired
permission. Likewise, there is only one possible grant. All other continuation
frames are irrelevant. So a full evaluation context can be seen as an arbitrary
string in the alphabet Σ = {y, n, g}, where y and n represent frames that
contain or are missing the given permission, and g represents a grant. Assume

4.5. AN ALTERNATIVE IMPLEMENTATION 65

the ordering of the letters in the word places the outermost frames at the left
end of the string.

start ///.-,()*+ y,n
yyGF ED

g

��/.-,()*+�������� y,g
yyBC@A

n

OO
simplifies to start ///.-,()*+ n

yyGF ED
g

��/.-,()*+�������� g
yyBC@A

n

OO

Figure 4.2: Computing permissions as a finite state automaton

With the grammar in place, the OKfg predicate can easily be interpreted as
a finite-state machine that recognizes the regular expression Σ∗gy∗; that is, a
string ending with a grant followed by any number of y’s. The resulting FSA has
just two states, one accepting and one non-accepting. A g always transitions
to the accepting state, and a n always transitions to the non-accepting state.
A y causes a (trivial) transition to the current state.

This last observation leads us to a further simplification of the grammar.
Since the presence of the character y does not affect the decision of the FSA,
we may ignore the continuation frames that generate them, and consider only
the grant frames and those security frames that do not include the desired
permission. The regular expression indicating the success of OKfg becomes
simply Σ∗g. Figure 4.2 shows these two finite-state automata graphically.

This simplification leads to an insight about the security model of λsec. In
the automaton that λsec induces, the y may be ignored. In the security model,
then, callers with a given permission do not affect the result of a check for that
permission. Rather, it is the callers without that permission that might change
its status, and grants of that permission. This suggests that what the security
model really tracks is the absence of certain permissions. At runtime, then, it
is the complement of the permissions attributed to a caller that matters.

Applying the simplified grammar to our reduction semantics allows us to
collapse uninterrupted sequences of frame and grant expressions that occur in
the evaluation context. A substring ending in a g results in an accepting state,
a substring ending in an n results in a non-accepting state, and the empty
substring does not alter the decision. To extend this to the whole language, we
must expand our single-permission state to a full table of permissions.

The cm machine

In the cm (continuation-marks) machine, each continuation frame contains a
table of permissions, called a markset. The evaluation steps for frame and grant
expressions update the table in the enclosing continuation, rather than increas-
ing the length of the continuation itself. The OKcm predicate now inspects
these marksets, rather than the frame and grant elements of the continuation.
Otherwise, the cm machine is the same as the fg machine.

66
CHAPTER 4. STACK INSPECTION IMPLEMENTED WITH

CONTINUATION MARKS

The CM Machine

m ∈ marksets = P ⇀ {grant, no}
Configurations = 〈M, ρ, σ, κ〉 | 〈V, ρ, σ, κ〉 | 〈V, σ〉 | fail

Final Configurations = 〈V, σ〉 | fail
κ ∈ continuations = 〈empty : m〉 | 〈push : M, ρ, κ, m〉 | 〈call : V, κ, m〉

V ∈ Values = 〈closure : M, ρ〉
ρ ∈ Environments = Identifiers ⇀ Locations

α, β ∈ Locations
σ ∈ Stores = Locations ⇀ Values

emptycm = 〈empty : ∅〉

〈λfx.M, ρ, σ, κ〉 7→cm 〈〈closure : λfx.M, ρ〉, ρ, σ, κ〉
〈x, ρ, σ, κ〉 7→cm 〈σ(ρ(x)), ρ, σ, κ〉

〈M N, ρ, σ, κ〉 7→cm 〈M, ρ, σ, 〈push : N, ρ, κ, ∅〉〉
〈R[M], ρ, σ, κ〉 7→cm 〈M, ρ, σ, κ[R 7→ no]〉

〈grant R in M, ρ, σ, κ〉 7→cm 〈M, ρ, σ, κ[R 7→ grant]〉

〈test R then M else N, ρ, σ, κ〉 7→cm

〈M, ρ, σ, κ〉 if OKcm〈R, [[κ]]〉
〈N, ρ, σ, κ〉 otherwise

〈fail, ρ, σ, κ〉 7→cm fail

〈V, ρ, σ, 〈empty : m〉〉 7→cm 〈V, σ〉
〈V, ρ, σ, 〈push : M, ρ′, κ, m〉〉 7→cm 〈M, ρ′, σ, 〈call : V, κ, ∅〉〉

〈V, ρ, σ, 〈call : V ′, κ, m〉〉 7→cm 〈M, ρ′[f 7→ β][x 7→ α], σ[α 7→ V][β 7→ V ′], κ〉
if V ′ = 〈closure : λfx.M, ρ′〉 and α, β 6∈ dom(σ)

〈V, ρ, σ[β, . . . 7→ V, . . .], κ〉 7→cm 〈V, ρ, σ, κ〉
if {β, . . .} is nonempty and
β, . . . do not occur in V , ρ, σ, or κ

where
〈. . . , m〉[R 7→ c] = 〈. . . , m[R 7→ c]〉 (pointwise extension)

and

OKcm〈∅, [[κ]]〉
OKcm〈R, [[〈empty : m〉]]〉 iff (R ∩m−1(no) = ∅)

OKcm〈R, [[〈push : M, ρ, κ, m〉]]〉
OKcm〈R, [[〈call : V, κ, m〉]]〉

ff
iff (R ∩m−1(no) = ∅)

and OKcm〈R−m−1(grant), [[κ]]〉

Figure 4.3: The CM Machine

4.5. AN ALTERNATIVE IMPLEMENTATION 67

Figure 4.3 shows the definition of the cm machine. Note that the framing
operation takes the complement of the set R, in accordance with the insight
of the prior section. We assume that the set of permissions is finite. Also, the
markset mappings are extended pointwise across sets of permissions; that is,
m[R → c](p) = c if p ∈ R, and m(p) otherwise.

The Evalcm function is another instance of Evalx. That is, Evalcm is the
same as Evalfg, except that it uses 7→cm as its transition function and emptycm

as its empty continuation.
The two machines produce the same results.

Theorem 5 (Machine Equivalence) For all (C, . . .),

Evalfg(C, . . .) = V iff Evalcm(C, . . .) = V

To prove this theorem, we must show that if the fg machine terminates, the
cm machine terminates with the same value, and that if the fg machine does
not terminate in a final state, then the cm machine also fails to terminate.

For the purposes of the proof, we assume that no garbage collection steps
are taken, because garbage collection cannot affect the result of the evaluation.

Lemma 8 (No Garbage Collection) For every evaluation sequence in ei-
ther the fg or cm machine, removing every garbage-collection step produces
another legal sequence, and no divergent computation is made finite by such a
removal.

T : Cfg → Ccm

T 〈M, ρ, σ, κ〉 = 〈M, ρ, σ, T (κ)〉
T 〈V, ρ, σ, κ〉 = 〈V, ρ, σ, T (κ)〉

T 〈V, σ〉 = 〈V, σ〉
T (fail) = fail
T 〈〉 = 〈empty : ∅〉

T 〈push : M, ρ, κ〉 = 〈push : M, ρ, T (κ), ∅〉
T 〈call : V, κ〉 = 〈call : V, T (κ), ∅〉

T 〈frame : R, κ〉 = T (κ)[R 7→ no]
T 〈grant : R, κ〉 = T (κ)[R 7→ grant]

To compare the machines, we introduce the function T . The function T
maps configurations of the fg machine to configurations of the cm machine. A
step in the fg machine corresponds to either no steps or one step in the cm
machine.

Lemma 9 (Simulation) Given a configuration Ccm, with Ccm = T (Cfg), one
of the following holds:

1. Cfg is either fail or 〈V, σ〉

2. Cfg and Ccm are both stuck.

68
CHAPTER 4. STACK INSPECTION IMPLEMENTED WITH

CONTINUATION MARKS

3. Cfg 7→fg C ′
fg and T (C ′

fg) = Ccm

4. Cfg 7→fg C ′
fg and Ccm 7→cm T (C ′

fg)

The proof is a case analysis on the four cases and the configurations of the
machine. The fg machine takes extra steps only when popping frame and grant
continuations after reducing their arguments to values.

The cm machine can always represent a sequence of frame and grant ex-
pressions with a single markset. The sequence of steps below illustrates this
for the divergent mutually-recursive computation shown in section 4.3.

RS
∆
= {b, c}

RA
∆
= {a, b}

〈A〈RA, [[UserFn]]〉 A〈RS, [[SystemFn]]〉, ∅, ∅, 〈empty : ∅〉〉
7→cm 〈A〈RA, [[UserFn]]〉, ∅, ∅, 〈push : A〈RS, [[SystemFn]]〉, ∅, 〈empty : ∅〉, ∅〉〉
7→cm 〈UserClo, ∅, ∅, 〈push : A〈RS, [[SystemFn]]〉, ∅, 〈empty : ∅〉, ∅〉〉
7→cm 〈A〈RS, [[SystemFn]]〉, ∅, ∅, 〈call : UserClo, 〈empty : ∅〉, ∅〉〉
7→cm 〈SystemClo, ∅, ∅, 〈call : UserClo, 〈empty : ∅〉, ∅〉〉
7→cm 〈RA[sys user], ρ0, σ0, 〈empty : ∅〉〉
7→cm 〈sys user , ρ0, σ0, 〈empty : [{c} 7→ no]〉〉
7→cm 〈sys, ρ0, σ0, 〈push : user , ρ0, 〈empty : [{c} 7→ no]〉〉〉
7→cm 〈SystemClo, ρ0, σ0, 〈push : user , ρ0, 〈empty : [{c} 7→ no]〉, ∅〉〉
7→cm 〈user , ρ0, σ0, 〈call : SystemClo, 〈empty : [{c} 7→ no]〉, ∅〉〉
7→cm 〈UserClo, ρ0, σ0, 〈call : SystemClo, 〈empty : [{c} 7→ no]〉, ∅〉〉
27→cm 〈RS[user sys], ρ0, σ0, 〈empty : [{c} 7→ no]〉〉
7→cm 〈user sys, ρ0, σ0, 〈empty : [{a, c} 7→ no]〉〉
7→cm 〈user , ρ0, σ0, 〈push : sys, ρ0, 〈empty : [{a, c} 7→ no]〉〉〉
7→cm 〈UserClo, ρ0, σ0, 〈push : sys, ρ0, 〈empty : [{a, c} 7→ no]〉, ∅〉〉
7→cm 〈sys, ρ0, σ0, 〈call : UserClo, 〈empty : [{a, c} 7→ no]〉, ∅〉〉
7→cm 〈SystemClo, ρ0, σ0, 〈call : UserClo, 〈empty : [{a, c} 7→ no]〉, ∅〉〉
77→cm 〈UserClo, ρ0, σ0, 〈call : SystemClo, 〈empty : [{a, c} 7→ no]〉, ∅〉〉
77→cm 〈SystemClo, ρ0, σ0, 〈call : UserClo, 〈empty : [{a, c} 7→ no]〉, ∅〉〉
. . .

4.6 Space Consumption

In “Proper Tail Recursion and Space Efficiency,” Clinger [11] describes a frame-
work that characterizes the memory behavior of a language implementation as
a mapping from programs to the maximum memory that the implementa-
tion consumes while evaluating that program. He demonstrates the difference
between various named classes of implementation (“tail-recursive,” “safe-for-
space,” etc.), and defines asymptotic space complexity classes for each, based
on abstract machine definitions.

In order to apply Clinger’s analytic framework of tail recursion to the fg
and cm machines, we must define a memory measure that maps a machine

4.6. SPACE CONSUMPTION 69

configuration to a real number. The measure for the fg machine is straightfor-
ward.

space(fail) = 1
space(〈V, σ〉) = space(V) + space(σ)

space(〈M, ρ, σ, κ〉) = |dom(ρ)|+ space(κ) + space(σ)
space(〈V, ρ, σ, κ〉) = space(V) + |dom(ρ)|+ space(κ)+

space(σ)

space(〈closure : λfx.M, ρ〉) = 1 + |dom(ρ)|

space(σ) =
P

α∈dom(σ) 1 + space(σ(α))

space(〈〉) = 1
space(〈push : M, ρ, κ〉) = 1 + |dom(ρ)|+ space(κ)

space(〈call : V, κ〉) = 1 + space(V) + space(κ)
space(〈frame : R, κ〉) = 1 + |R|+ space(κ)
space(〈grant : R, κ〉) = 1 + |R|+ space(κ)

To accommodate the cm machine, we extend this function with rules for
the size of a markset, and for the size of continuations that contain a markset.

space(〈empty : m〉) = 1 + space(m)
space(〈push : M, ρ, κ, m〉) = 1 + space(ρ) + space(κ) + |dom(m)|

space(〈call : V, κ, m〉) = 1 + space(V) + space(κ) + |dom(m)|

The space functions Sfg and Scm are defined as the maximum amount of
memory consumed during the evaluation of a program. In order to ensure
that unreachable store values do not affect the space function, Clinger de-
fines a “space-efficient” computation as a sequence of steps where the garbage-
collection rule is applied as often as possible.

Definition 3 (Space-Efficient Computations) A space-efficient computa-
tion in an implementation x is a finite or countably infinite sequence of con-
figurations {Ci} such that

• If Ci and Ci+1 are in the sequence, then Ci 7→x Ci+1.

• If the sequence is finite, then it ends with a final configuration.

• If the garbage collection rule is applicable to Ci, then Ci 7→x Ci+1 by the
garbage collection rule.

Definition 4 (Supremum) For R ⊆ <, the supremum Sup(R) is the least
upper bound of R, or ∞ if no such bound exists.

70
CHAPTER 4. STACK INSPECTION IMPLEMENTED WITH

CONTINUATION MARKS

Definition 5 (Space Consumption Sx) The space consumption function of
an implementation x is Sx : Program → <∪ {∞} defined by

Sx(P) = |P |+
sup{sup{space({Ci})}|

{Ci} is a space-efficient
computation in x, with

C0 = Lx(P)}

where |P | is the number of nodes in the abstract syntax tree of P .

Note that the outer ‘supremum’ accommodates the possibility of an imple-
mentation that is observationally nondeterministic. This definition is therefore
sufficient but overly general.

Following Clinger, we extend the notion of a space function to one of asymp-
totic space complexity.

Definition 6 (Asymptotic Complexity, O(f)) If A is any set, and f :
A → < ∪ {∞}, then the asymptotic (upper bound) complexity class of f is
O(f), which is defined as the set of all functions g : A → < ∪ {∞} for which
there exist real constants c1 and c0 such that c1 > 0 and

∀a ∈ A.g(a) ≤ c1f(a) + c0

We can now prove that the asymptotic space consumption of the fg machine
is strictly greater than that of the cm machine. Put differently, the class of
implementations for λsec in O(Scm) is strictly smaller that those in O(Sfg).

Theorem 6 (Space Comparison)

O(Scm) (O(Sfg)

Proof Sketch: The proof has two parts. First, we must show that every
function in O(Scm) is also in O(Sfg). Second, we must show there is a function
in O(Sfg) that is not in O(Scm).

Since the set O(Scm) takes Scm as its asymptotic upper bound, it suffices
for the first half of the proof to show that Scm is in the set O(Sfg). That is, for
all programs, the maximum space taken while evaluating the program in the
cm machine is less than or equal to some constant times the space that the fg
machine takes. For simplicity, we shall choose a loose upper bound, taking as
our constant the size of the set of permissions P.

The translation T removes frame and grant continuation frames and in-
troduces marksets on each remaining frame, leaving all else untouched. We
can therefore show that our bound is satisfied by considering the worst case,
in which the fg machine contains no frame or grant continuations, and each
markset in the cm machine contains an entry for every possible permission. In

4.6. SPACE CONSUMPTION 71

this case, each frame is increased in size by the size of P. Since each frame
in the fg machine is at least of size 1, we may take |P| as our linear factor to
satisfy the bound.

For the second half of the proof, it suffices to show a program whose machine
configuration grows without bound in the fg machine and does not in the cm
machine. The example given earlier satisfies this requirement. �

To prove that our implementation is tail-recursive by Clinger’s definition, we
must extend his language to include the new forms that appear in λsec. In order
to produce the most stringent possible requirement on space consumption,
we propose an implementation that includes a security oracle. That is, we
compare ourselves to an implementation that consumes no space at all for the
maintenance of stack-trace information. Because of the similarity between the
fg machine and Clinger’s, the easiest way to model this is to consider the space
measure obtained by eliminating the size of the markset from the calculation.
We therefore define the oracular space measure “spaceo,” which differs from
the existing function only in its rules for continuations.

spaceo(〈empty : m〉) = 1
spaceo(〈push : M, ρ, κ, m〉) = 1 + space(ρ) + spaceo(κ)

spaceo(〈call : V, κ, m〉) = 1 + space(V) + spaceo(κ)

Combining this space measure with the existing cm machine, we define the
space class So of implementations that consume no memory at all for security
information. We can now prove that the cm machine is tail-recursive.

Theorem 7 (Tail Recursion)

O(Scm) = O(So)

Proof Sketch To show set equality of asymptotic measures, it suffices to
show that Scm ∈ O(So) and that So ∈ O(Scm).

Since these two space classes use the same machine semantics, we may
use the identity function to translate between configurations, and the proof of
intensional language equality is trivial.

For the first half of the proof, we must show that the non-oracular measure
of a configuration’s space (spacecm(C)) is at most k times as large as the space
taken by the oracular measurement (spaceo(C)). As in the previous proof, we
choose as our constant the size of the permission set (|P|). The non-oracular
space measure increases the size of a continuation frame by at most |P|, and
every continuation frame is of size at least one, so the space taken by a config-
uration grows by no more than a factor of |P|.

The other direction is much easier, since simple inspection of the rules for
the oracular space function reveals that this function is uniformly smaller for
a given configuration than the non-oracular space measure. �

72
CHAPTER 4. STACK INSPECTION IMPLEMENTED WITH

CONTINUATION MARKS

4.7 An implementation using Continuation Marks

The marksets defined by the cm machine may be implemented more standard
models of continuation marks. Figure 4.2 shows that regarding permissions
independently reduces the question of whether a privilege is granted to the
simpler one of whether a grant or a no was more recently seen. Continuation
marks can model this behavior simply by using one key for each permission.
Following the insight given by that diagram, these marks record only grant and
no states.

To be more precise, we may reformulate the translation from the λsec lan-
guage to a language with continuation marks by replacing each frame expres-
sion by a nested series of w-c-m’s, mapping each of the privileges not granted
by the frame expression to no. A grant expression is replaced by a series of
w-c-m’s mapping each of the privileges legally granted by the expression to
‘grant’. A test expression for a given permission translates into a check whether
the first element of (c-c-m k) for the key k corresponding to the permission is
grant or no (or whether there is any mark corresponding to the permission at
all).

4.8 The Richer Models of Java and .Net

The model of Fournet and Gordon is an abstraction of Java’s and .Net’s secu-
rity model. Both Java and .Net associate program text with permissions and
perform security checks by “walking the stack.” Both Java and .Net, however,
feature a richer security model than λsec does.

One difference is that the set of permissions is not fixed at compile or even
at load time. In both Java and .Net, every object that subclasses a Permission
class becomes a permission in the security system.

Also, these systems may permit the mappings from code to permissions to
be mutated at runtime. In Java 1.2, however, the default implementation does
not allow this. That is, the mapping from code to permissions is performed
at class-loading time, and not subsequently altered [23]. We are not aware of
such a guarantee in .Net.

These differences, however, do not invalidate the principal invariant that
underlies our proposed marriage of security and tail-calling. Specifically, the
security information retained by the system can only be observed by a security-
checking system call. This means that the representation of this information
(and the implementation of the corresponding security-checking primitive) may
be changed, as long as these changes preserve the observable behavior of the
system.

In addition, all of the systems we have examined share the trait that the
frame expressions—or the corresponding constructs in Java or .Net—may be
reordered, up to the boundaries established by a grant (or .Net’s “assert”).

The first step in applying the lessons of our work to a given system is
to formulate an appropriate model. For languages like Java, Java’s JVM, or

4.9. RELATED WORK 73

.Net’s intermediate language, this model should probably extend λsec with
assignment, objects with subclassing, exceptions, and dynamic loading.

The next step is to formulate the notion of tail-calling in such a system.
This is fairly natural for any model that treats function application as the
transfer of control to a given source location with an unchanged continuation.

The final step is to extend the system with mechanisms for maintaining
security state, and to demonstrate that these additions do not affect the tail-
recursive behavior of the model.

Fundamentally, our approach separates the implementation of function calls
from the implementation of security primitives. In other words, it decouples
the security mechanism from the memory behavior of stack frames. This differs
from the existing implementations, which capitalize on unanticipated observa-
tions at the machine level and therefore restrict the set of possible language
implementations.

We conjecture that the security-policy implementation that results from
such an analysis is likely to have much in common with our CESK machines.
That is, the security information will be attached to the stack frame of the par-
ent, rather than the stack frame of the child. Garbage-collection-like strategies
for the management of such information could be employed to maintain asymp-
totic memory behavior while delaying run-time costs until the application of a
security check.

4.9 Related Work

This chapter is directly inspired by the POPL presentation of a semantics for
stack inspection by Fournet and Gordon [22], and by our existing work on
continuation marks. The key insight required to apply our earlier work to this
area is that continuation marks for security permissions contain negative rather
than positive information. Once we understood this, we could derive the rest
of the ideas here in a straightforward manner.

Security-Passing Style

Another implementation strategy for stack inspection is due to Wallach et
al. [46, 47]. In security-passing style, each procedure accepts an additional
argument that represents the security context accumulated thus far.

Essentially, this implementation derives from the observation that the secu-
rity information computed on some context does not change while that context
remains active. Therefore, an implementation can compute the security in-
formation (or some representation thereof) once, at each call site, and pass it
along during the computation.

As a tool of semantic definition, we believe that security-passing style suc-
ceeds. That is, the given transformation, when combined with a semantics for
the underlying target language, does specify a meaning for each of the secu-
rity primitives. However, we find the semantics of Fournet and Gordon to be
simpler, as they directly interpret the language of security primitives.

74
CHAPTER 4. STACK INSPECTION IMPLEMENTED WITH

CONTINUATION MARKS

As a tool of implementation, we believe security-passing style leaves some-
thing to be desired. In particular, the simple overhead of adding an argument
to each call is prohibitive. It is certainly the case that a variety of optimizations
may be applied to lower the runtime cost, but in this case we contend that our
implementation strategy is a more direct route to a similar optimized machine.

Other Work

Several others [3, 40] have considered the problem of adding tail calls to the
JVM, which does support stack inspection. However, none of these specifically
addressed stack inspection or security, and all of them made the simplifying
assumption that tail-calling was only possible between procedures of the same
component; that is, none of them considered calls between code from distinct
security domains.

Karjoth [26] presents a semantics for access control in Java 2; his model
presents rules for the maintenance of access control information, but leaves the
rules for the evaluation of the language itself unspecified. Because he includes
rules for matching ‘call’ and ‘return’ expressions, his system cannot be the
foundation for a tail-calling implementation.

Erlingsson and Schneider [13] show how to implement the stack inspection
primitives with no support from the runtime system. That is, they use an
annotation-based approach to transform a program with security primitives
into one without them. However, this work winds up simulating the stack on
the side, with two unfortunate consequences: exceptions become much more
difficult, and tail-calling behavior is destroyed.

Chapter 5

Conclusion

One goal of programming languages research is to explain complex language
features in terms of simpler ones. We have done exactly this by introducing
continuation marks and by showing how they help to explain tools such as
debuggers and features such as stack inspection.

5.1 Results

Continuation marks are useful in a variety of contexts. In chapter 2, we showed
how continuation marks form the underpinning of several language features in
MzScheme, including exception handlers and parameters. Furthermore, an an-
notation using continuation marks forms the core of a wide variety of DrScheme
tools, including a profiler, an error-tracing exception reporter, a simple debug-
ger, a trace engine, and of course DrScheme’s stepper.

In chapter 3, we examined steppers in more detail, formulating claims of
correctness for steppers in general and demonstrating that our stepper’s model
is correct. This chapter also showed how the continuation marks play a key
role in decoupling the stepper’s definition from the language’s semantics. That
is, continuation marks allow a stepper to observe a program’s behavior, rather
than defining it.

Chapter 4 examined the possible role of continuation marks in stack inspec-
tion. In particular, we showed how continuation marks may be used to endow
Fournet and Gordon’s stack inspection model with tail-calling behavior, and
we suggested a related plan to make tail-calling possible for richer models of
stack-inspection behavior.

Finally, appendix C highlights the similarities between aspect-oriented pro-
gramming and continuation marks. Both of them are designed to allow pro-
grams to alter their behavior based on new information about dynamic context,
and we suggest how to implement AOP using continuation marks.

Broadly, continuation marks are useful because they allow us to specify
models for a broad class of tools and features at a language level, where be-
fore these tools and features were specified in terms of an implementation, if

75

76 CHAPTER 5. CONCLUSION

they were specified at all. Continuation marks are therefore a step forward in
our understanding of program semantics. Conversely, the models built atop
continuation marks suggest new implementation architectures.

5.2 Future Directions

Our work on continuation marks thus far suggests several avenues of future
research, ranging from the purely practical to the largely theoretical.

First, our work on stack inspection and tail-calling suggest that continu-
ation marks could be adapted to fit into a framework such as Sun’s JVM or
Microsoft’s Common Language Runtime. Each of these frameworks currently
contains a variety of features that might be more cleanly implemented using
continuation marks or a related mechanism, and both would benefit from an
improved understanding of tail-calling.

Second, our existing Scheme debuggers are research implementations, and
not highly optimized. If we wish to convince language implementors that con-
tinuation marks are a solid foundation for debuggers and steppers in their lan-
guages, we will need to demonstrate that continuation marks can implement a
highly optimized debugger for Scheme.

Finally, the declarative nature of continuation marks suggests that they
should be applicable to a wide variety of language types, including lazy and
concurrent languages for which debuggers are rare. It should also be possible
to make use of DrScheme’s ProfessorJ embedding of Java to build a stepper
for Java without modifying the JVM.

Appendix A

Stepper Appendices

A.1 Annotation and Reconstruction Definitions

Annotation

Annotate : Program → Program

Annotate[[(define f1 C1) . . . (define fn Cn)]] =

(define fi W~k(’outermost,

1,

〈Ci〉,
〈Q[[fi]],QD[[(define fi+1 Ci+1)]], . . . ,QD[[(define fn Cn)]]〉,
〈f1, . . . , fi−1〉,
t1)) . . . ;; for 1 ≤ i ≤ n

where

~k = {k|(w-c-m k . . .) occurs in 〈C, ...〉}

77

78 APPENDIX A. STEPPER APPENDICES

AC~k : Expr → Expr

AC~k[[n]] = W~k(, , 〈〉, , , n)

AC~k[[’x]] = W~k(, , 〈〉, , , ’x)

AC~k[[p]] = W~k(, , 〈〉, , , p)

AC~k[[(C . . .)]] = W~k(’app, 1, 〈C, ...〉, 〈〉, 〈〉, (t1 . . .))

AC~k[[(lambda (x . . .) C)]] = W~k(, , 〈〉, , , (lambda (x . . .) E~k[[C]]))

AC~k[[x]] = W~k(, , 〈〉, , , x)

AC~k[[f]] = W~k(, , 〈〉, , , f)

AC~k[[(cons C1 C2)]] = W~k(’cons, 1, 〈C1, C2〉, 〈〉, 〈〉, (cons t1 t2))

AC~k[[null]] = W~k(, , 〈〉, , ,null)

AC~k[[(car C)]] = W~k(’car, 1, 〈C〉, 〈〉, 〈〉, (car t1))

AC~k[[(cdr C)]] = W~k(’cdr, 1, 〈C〉, 〈〉, 〈〉, (cdr t1))

AC~k[[true]] = W~k(, , 〈〉, , , true)

AC~k[[false]] = W~k(, , 〈〉, , , false)

AC~k[[(if C1 C2 C3)]] = W~k(’if, 1, 〈C1〉, 〈C2, C3〉, 〈〉, (if t1 E~k(C2) E~k(C3)))

AC~k[[(w-c-m k C1 C2)]] = W~k(’wcm, 1, 〈C1〉, 〈′k, C2〉, 〈〉, (w-c-m k t1 E~k(C2)))

AC~k[[(c-c-m k . . .)]] = W~k(, , 〈〉, , , (c-c-m k . . .))

AC~k[[(output j C)]] = W~k(’output, 1, 〈C〉, 〈′j〉, 〈〉, (output j t1))

W~k : (Expr, n, 〈Expr, ...〉, 〈Expr, ...〉, 〈f, ...〉, Expr) → Expr

W~k(, , 〈〉, , , C′′) = C′′

W~k(`, n, 〈C1, C2, ...〉, 〈C′
1, ...〉, 〈f, ...〉, C′′) =

(w-c-m debug

(list `

(list t1 . . . tn−1)

(list (list Q[[x]] x) . . . (list Q[[f]] f) . . .)

;; for x ∈ fv(〈C2, ...〉) ∪ fv(〈C′
1, ...〉)

(list Q[[C2]] . . .)

(list Q[[C′
1]] . . .))

(let (tn E~k(C1))

B~k(W~k(`, n + 1, 〈C2, ...〉, 〈C′
1, ...〉, C′′),

[[(list ’valstep tn)]]))

A.1. ANNOTATION AND RECONSTRUCTION DEFINITIONS 79

E~k : Expr → Expr

E~k[[C]] = (w-c-m debug

false

B~k(AC~k[[C]], [[(list ’expstep Q[[C]] (list (list Q[[x]] x) . . .))]]))

;; for x ∈ fv(C)

B~k : Expr× Expr → Expr

B~k[[C1]][[C2]] = (let (tdc (output debug

(list C2 (c-c-m debug k . . .)))) ;; for k ∈ ~k

C1)

Q : Expr → Expr

Q[[n]] = n

Q[[’x]] = ’x

Q[[p]] = p

Q[[(C1 . . .)]] = (list ’app Q[[C1]] . . .)

Q[[(lambda (x . . .) C)]] = (list ’lambda (list ’x . . .) Q[[C]])

Q[[x]] = (list ’var ’x)

Q[[f]] = (list ’topvar ’f)

Q[[(cons C1 C2)]] = (list ’cons Q[[C1]] Q[[C2]])

Q[[null]] = null

Q[[(car C)]] = (list ’car Q[[C]])

Q[[(cdr C)]] = (list ’cdr Q[[C]])

Q[[true]] = true

Q[[false]] = false

Q[[(if C1 C2 C3)]] = (list ’if Q[[C1]] Q[[C2]] Q[[C3]])

Q[[(w-c-m k C1 C2)]] = (list ’w-c-m ’k Q[[C1]] Q[[C2]])

Q[[(c-c-m k . . .)]] = (list ’ccm ’k . . .)

Q[[(output j C)]] = (list ’output ’j Q[[C]])

QD : Definition → Expr

Q[[(define f C)]] = (list ’cons ’f Q[[C]])

80 APPENDIX A. STEPPER APPENDICES

Configuration Annotation

AS~k : Configuration → Configuration

AS~k(〈C, E, 〈K, M〉, D〉) = 〈AC~k(C),AE~k(E), 〈AK~k(K, D),AE~k(M)[debug 7→ 〈false〉]〉,
AD~k(D)〉

AS~k(〈V, 〈K, ∅〉, D〉) = 〈AV ~k(V), 〈AK~k(K, D), ∅〉,AD~k(D)〉
AS~k(〈E〉) = 〈AE~k(E)〉

AS~k(〈error〉) = 〈error〉

AK~k : Continuation× Topenv → Continuation

AK~k(〈app : 〈V1, . . . , Vi〉, 〈C1, . . . , Cj〉, E, 〈K, M〉〉, D) =
〈app : 〈Vb〉, 〈〉, ∅, 〈AK~k(K, D),AE~k(M)[debug 7→ Vm]〉〉
where (Vb, Vm) = WK~k(’app, 〈V1, . . . , Vi〉, 〈C1, . . . , Cj〉, 〈〉, (t1 . . . ti+j),AE~k(E), ∅)

AK~k(〈cons1 : C, E, 〈K, M〉〉, D) =
〈app : 〈Vb〉, 〈〉, ∅, 〈AK~k(K, D),AE~k(M)[debug 7→ Vm]〉〉
where (Vb, Vm) = WK~k(’cons, 〈〉, 〈C〉, 〈〉, (cons t1 t2),AE~k(E), ∅)

AK~k(〈cons2 : V, 〈K, M〉〉, D) =
〈app : 〈Vb〉, 〈〉, ∅, 〈AK~k(K, D),AE~k(M)[debug 7→ Vm]〉〉
where (Vb, Vm) = WK~k(’cons, 〈V 〉, 〈〉, 〈〉, (cons t1 t2), ∅, ∅)

AK~k(〈car : 〈K, M〉〉, D) =
〈app : 〈Vb〉, 〈〉, ∅, 〈AK~k(K, D),AE~k(M)[debug 7→ Vm]〉〉
where (Vb, Vm) = WK~k(’car, 〈〉, 〈〉, 〈〉, (car t1), ∅, ∅)

AK~k(〈cdr : 〈K, M〉〉, D) =
〈app : 〈Vb〉, 〈〉, ∅, 〈AK~k(K, D),AE~k(M)[debug 7→ Vm]〉〉
where (Vb, Vm) = WK~k(’cdr, 〈〉, 〈〉, 〈〉, (cdr t1), ∅, ∅)

AK~k(〈if : C1, C2, E, 〈K, M〉〉, D) =
〈app : 〈Vb〉, 〈〉, ∅, 〈AK~k(K, D),AE~k(M)[debug 7→ Vm]〉〉
where (Vb, Vm) = WK~k(’if, 〈〉, 〈〉, 〈C1, C2〉, (if t1 C1 C2),AE~k(E), ∅)

AK~k(〈wcm : k, C, E, 〈K, M〉〉, D) =
〈app : 〈Vb〉, 〈〉, ∅, 〈AK~k(K, D),AE~k(M)[debug 7→ Vm]〉〉
where (Vb, Vm) = WK~k(’wcm, 〈〉, 〈〉, 〈’k, C〉, (w-c-m k t1 C),AE~k(E), ∅)

AK~k(〈out : j, 〈K, M〉〉, D) =
〈app : 〈Vb〉, 〈〉, ∅, 〈AK~k(K, D),AE~k(M)[debug 7→ Vm]〉〉
where (Vb, Vm) = WK~k(’out, 〈〉, 〈〉, 〈’j〉, (output j t1), ∅, ∅)

AK~k(〈〉, D) =
〈app : 〈Vb〉, 〈〉, ∅, 〈〈〉, ∅[debug 7→ Vm]〉〉
where (Vb, Vm)

= WK~k(’outermost, 〈〉, 〈〉, 〈Q[[f]],QD[[(define f1 C1)]], . . .〉, t1, ∅,AE~k(Ep))
and D = 〈Ep, f, 〈〈f1, C1〉, . . .〉〉

A.1. ANNOTATION AND RECONSTRUCTION DEFINITIONS 81

WK~k : (Expr, 〈Value, . . .〉, 〈Expr, . . .〉, 〈Expr, . . .〉, Expr, Env, Env)
→ (Value, Value)

WK~k(`, 〈V1, . . . , Vn〉, 〈C1, . . .〉, 〈C′
1, . . .〉, C′′, E, Et) = (〈clo : 〈x〉, Cb, E

′|fv(Cb)\,〈x〉,〉, V ′)

where
E′ = E[t1 7→ V1] . . .
(Cm, E, Et) 7→s V ′

W~k(`, n + 1, 〈C1, . . .〉, 〈C′
1, . . .〉, 〈f1, . . .〉, C′′)

= (w-c-m debug Cm ((lambda (x) Cb)))
Et = ∅[f1 7→] . . .

AV ~k : Value → Value

AV ~k(〈num : n〉) = 〈num : n〉
AV ~k(〈sym : x〉) = 〈sym : x〉
AV ~k(〈prim : p〉) = 〈prim : p〉

AV ~k(〈clo : 〈x, ...〉, C, E〉) = 〈clo : 〈x, ...〉, E~k(C),AE~k(E)〉
AV ~k(〈pair : V1, V2〉) = 〈pair : AE~k(V1),AE~k(V2)〉

AV ~k(〈null〉) = 〈null〉
AV ~k(〈true〉) = 〈true〉
AV ~k(〈false〉) = 〈false〉

AE~k : Env → Env

AE~k(∅[x1 7→ V1] . . .) = ∅[x1 7→ AV ~k(V1)] . . .

AD~k : Topenv → Topenv

AD~k(〈Et, f, 〈〈f1, C1〉, . . . , 〈fn, Cn〉〉〉) = 〈AE~k(Et), f, 〈〈f1, C
′
1〉, . . . , 〈fn, C′

n〉〉〉

where

Et = ∅[f ′1 7→] . . . [f ′m 7→]

and

C′
i = WK~k(’outermost, 1, 〈Q[[fi]],Q[[(define fi+1 Ci+1)]], . . . ,Q[[(define fn Cn)]]〉,

〈f ′1, . . . , f ′m, f1, . . . , fi−1〉, t1)

82 APPENDIX A. STEPPER APPENDICES

7→s: Expr× Env× Env ⇀ Value

(n, E, Et) 7→s 〈num : n〉
(’x, E, Et) 7→s 〈sym : x〉
(p, E, Et) 7→s 〈prim : p〉
(x, E, Et) 7→s E(x)

(f, E, Et) 7→s Et(f)

((cons C1 C2), E, Et) 7→s 〈pair : V1, V2〉 if (C1, E, Et) 7→ V1 and (C2, E, Et) 7→ V2

(null, E, Et) 7→s 〈null〉
(true, E, Et) 7→s 〈true〉
(false, E, Et) 7→s 〈false〉

Reconstruction

Reconstruct : Value → Config

Reconstruct[[(list (list ’valstep V1) V2)]]
= 〈A−1

V (V1), 〈RK(V2), ∅〉,RD(V2)〉
Reconstruct[[(list (list ’expstep V3 V4) (cons (cons (list ’debug false) V1) V2))]]

= 〈Q−1(V3),RE(V4), 〈RK(V2),RE(V1)〉,RD(V2)〉

RK : Value → Continuation

RK [[(cons (cons (list ’debug (list ’app (list V ′
1 . . .) V3 (list V4 . . .) null)) V1) V2)]]

= 〈app : 〈A−1
V (V ′

1), . . .〉, 〈Q−1(V4), ...〉,RE(V3), 〈RK(V2),RE(V1)〉〉
RK [[(cons (cons (list ’debug (list ’cons null V3 (list V4) null)) V1) V2)]]

= 〈cons1 : Q−1(V4),RE(V3), 〈RK(V2),RE(V1)〉〉
RK [[(cons (cons (list ’debug (list ’cons (list V4) V null null)) V1) V2)]]

= 〈cons2 : A−1
V (V4), 〈RK(V2),RE(V1)〉〉

RK [[(cons (cons (list ’debug (list ’car null V null null)) V1) V2)]]
= 〈car : 〈RK(V2),RE(V1)〉〉

RK [[(cons (cons (list ’debug (list ’cdr null V null null)) V1) V2)]]
= 〈cdr : 〈RK(V2),RE(V1)〉〉

RK [[(cons (cons (list ’debug (list ’if null V3 null (list V4 V5))) V1) V2)]]
= 〈if : Q−1(V4),Q−1(V5),RE(V3), 〈RK(V2),RE(V1)〉〉

RK [[(cons (cons (list ’debug (list ’wcm null V3 null (list ’k V4))) V1) V2)]]
= 〈wcm : k,Q−1(V4),RE(V3), 〈RK(V2),RE(V1)〉〉

RK [[(cons (cons (list ’debug (list ’output null V null (list ’j))) V1) V2)]]
= 〈out : j, 〈RK(V2),RE(V1)〉〉

RK [[(cons (cons (list ’debug (list ’outermost null V V V)) null) null)]]
= 〈〉

A.2. EVALUATOR FRAGMENTS 83

RD : Value → Topenv

RD[[(cons V1 (cons V2 V3))]] = RD[[(cons V2 V3)]]
RD[[(cons (list (list ’debug (list ’outermost null V1 null (list V2 V3 . . .))))

null)]]
= 〈RE(V1),Q−1(V2), 〈〈f1, C1〉, . . .〉〉

where
Q−1

D (V3) . . . = (define f1 C1) . . .

RE : Value → Env

RE [[(list (list V1 V2) . . .)]] = ∅[x 7→ A−1
V (V2)] . . .

where
Q−1(V1) . . . = x . . .

A.2 Evaluator Fragments

(∗ ID ∗)
type id = string

(∗ SOURCE AST ∗)
type exp = NUM of int | SYM of string

| PRIM of string
| APP of exp list | LAM of (id list) ∗ exp
| VAR of id | TOPVAR of id
| CONS of exp ∗ exp | NULL | CAR of exp | CDR of exp
| TRUE | FALSE | IF of exp ∗ exp ∗ exp
| WCM of id ∗ exp ∗ exp
| CCM of (id list)
| OUTPUT of id ∗ exp
| ANYEXP of lazylabel

(∗ SOURCE PROGRAMS ∗)
and prog = (id ∗ exp) list
(∗ VALUES ∗)
and value = NUMVAL of int | SYMVAL of id

| PRIMVAL of string
| CLO of (id list ∗ exp ∗ val env) | PAIR of (value ∗ value)
| NULLVAL | TRUEVAL | FALSEVAL
| ANYVAL of lazylabel

and val env = ENV of (id ∗ value) list
| ANYENV of (lazylabel ∗ idlist)
| RESTRICT of ((idlist list) ∗ val env)
| EXTEND of ((id ∗ value) ∗ val env)

and marks = val env

84 APPENDIX A. STEPPER APPENDICES

and core kont = APPK of (value list) ∗ (exp list) ∗ val env ∗ kont
| CONS1K of exp ∗ val env ∗ kont
| CONS2K of value ∗ kont
| CARK of kont | CDRK of kont
| IFK of exp ∗ exp ∗ val env ∗ kont
| WCMK of id ∗ exp ∗ val env ∗ kont
| OUTK of id ∗ kont
| EMPTYK
| ANYKONT of lazylabel

and kont = core kont ∗ marks

and defs = DEFS of val env ∗ id ∗ ((id ∗ exp) list)

and configuration = EXP RUNNING of (exp ∗ val env ∗ kont ∗ defs)
| VAL RUNNING of (value ∗ kont ∗ defs)
| FINISHED of val env
| ERROR

and out = OUT of id ∗ value | TAU
and idlist = IDS of id list

| ANYIDS of lazylabel
| UNION of (idlist list)
| DIFF of (idlist ∗ idlist)

(∗ invariant: FREE VARS may never
∗ describe sets including "t" variables ∗)

| FREE VARS of lazylabel
and lazylabel = ID of id

| QUOTED of lazylabel
| EVALED QUOTED of lazylabel
| ANNOTATED of lazylabel
| CCM EXP of idlist
| EVALED CCM EXP of (idlist ∗ kont)
| EVALED CCM FRAME of (idlist ∗ val env)
| VAR PAIRS of idlist
| TOP VAR PAIRS of idlist
| EVALED VAR PAIRS of (lazylabel ∗ idlist)
| EVALED TOP VAR PAIRS of (lazylabel ∗ idlist)
| MARKS OF of lazylabel
| DOMAIN OF of val env
| CLOSED of lazylabel

and compute c =
match c with

ERROR -> raise Stopped
| FINISHED -> raise Stopped
| EXP RUNNING (e,rho,k,d) ->

exp compute (e,rho,k,d)
| VAL RUNNING (v,k,d) ->

value compute(v,k,d)

A.2. EVALUATOR FRAGMENTS 85

and exp compute (e,rho,k,((DEFS (finished, ,)) as d)) =
(TAU,
(let use val v = VAL RUNNING(v,(zero marks k),d)

(∗ destroy mark table; not observable *)
and use exp e new core k = EXP RUNNING(e,(env restrict [e] rho),

(new core k,(ENV [])),d)
in
(match e with

NUM (n) -> use val (NUMVAL n)
| SYM (id) -> use val (SYMVAL id)
| PRIM (prim) -> use val (PRIMVAL (prim))
| APP es ->

(match es with
[] -> raise (Syntax error "empty application")

| e :: esrest -> use exp e (APPK ([],esrest,(env restrict
esrest
rho),k)))

| LAM (ids,body) ->
(use val

(CLO(ids,body,(env restrict [e] rho))))
| VAR(id) ->

(use val (env lookup rho id))
| TOPVAR(id) ->

(try
(use val (env lookup finished id))

with
Not found -> ERROR)

| CONS(e1,e2) -> use exp e1 (CONS1K (e2,(env restrict [e2] rho),k))
| NULL -> use val NULLVAL
| CAR(e) -> use exp e (CARK (k))
| CDR(e) -> use exp e (CDRK (k))
| TRUE -> use val TRUEVAL
| FALSE -> use val FALSEVAL
| IF (test,e1,e2) -> use exp test (IFK (e1,e2,(env restrict [e1 ;e2] rho),k))
| WCM (key,mark,body) ->

(use exp mark (WCMK (key,body,(env restrict [body] rho),k)))
| CCM ids ->

(use val (ccm helper k ids))
| OUTPUT (id,e) -> use exp e (OUTK (id,k))

86 APPENDIX A. STEPPER APPENDICES

| ANYEXP (lazylabel) ->
(match lazylabel with

(∗ using quoted-exp lemma: ∗)
| (QUOTED l2) -> (use val (ANYVAL

(EVALED QUOTED l2)))
(∗ using closed-configuration lemma: ∗)
| (VAR PAIRS idlist1) ->

(if (environment must contain rho idlist1) then
(use val

(ANYVAL
(EVALED VAR PAIRS ((make fresh label ()),

idlist1))))
else

(raise (Abstract expression referenced
(lazylabel,"eval"))))

| (TOP VAR PAIRS idlist1) ->
(if (environment must contain finished idlist1) then

(use val
(ANYVAL

(EVALED TOP VAR PAIRS ((make fresh label ()),
idlist1))))

else
(raise (Abstract expression referenced

(lazylabel,"eval"))))
| (CCM EXP idlist) ->

(use val
(ANYVAL

(EVALED CCM EXP (idlist,
k))))

| -> (raise (Abstract expression referenced
(lazylabel,"eval")))))))

A.2. EVALUATOR FRAGMENTS 87

and value compute(v,(outer core k,),d) =
(match outer core k with

| APPK (vs,es,rho,k2) ->
(match es with
| [] ->
(let new vs = (List.append vs [v])
in

(match new vs with
| [] -> raise (Broken invariant

"can’t happen 200404081146")
| fnv :: args ->

(TAU,
(match fnv with

| CLO(ids,body,rho2) ->
(if ((List.length ids) =

(List.length args)) then
EXP RUNNING

(body,
(env restrict

[body]
(List.fold left2

env extend
rho2
ids
args)),

k2,
d)

else
ERROR)

| PRIMVAL(prim name) ->
(try (VAL RUNNING

(((prim table prim name) args),
(zero marks k2),d))

with
Prim error -> ERROR)

| -> ERROR))))
| e :: esrest -> (TAU, (EXP RUNNING(e,

(env restrict [e] rho),
(APPK (List.append vs [v],

esrest,
(env restrict esrest rho),
k2),

(ENV [])),
d))))

| CONS1K (e,rho,k2) -> (TAU, (EXP RUNNING(e,(env restrict [e] rho),
(CONS2K (v,k2),(ENV [])),d)))

| CONS2K (vcar,k2) -> (TAU, (VAL RUNNING
(PAIR(vcar,v),(zero marks k2),d)))

| CARK (k2) ->
(TAU, (match v with

| PAIR(car,cdr) -> VAL RUNNING(car,(zero marks k2),d)
| -> ERROR))

88 APPENDIX A. STEPPER APPENDICES

| CDRK (k2) ->
(TAU, (match v with

| PAIR(car,cdr) ->
VAL RUNNING(cdr,(zero marks k2),d)

| -> ERROR))
| IFK (e1,e2,rho,k2) ->

(TAU, (match v with
| TRUEVAL ->

EXP RUNNING(e1,(env restrict [e1] rho),k2,d)
| FALSEVAL ->

EXP RUNNING(e2,(env restrict [e2] rho),k2,d)
| -> ERROR))

| WCMK (key,body,rho,(core k2,m)) ->
(TAU, (EXP RUNNING (body,

(env restrict [body] rho),
(core k2,(add mark m (key,v))),
d)))

| OUTK (id,k2) -> (output (id,v)
(VAL RUNNING

(FALSEVAL,(zero marks k2),d)))
| EMPTYK ->

(TAU, (match d with
| DEFS (finished,current id,(next id,next exp)::rest) ->

EXP RUNNING(next exp,
(ENV []),
(EMPTYK,(ENV [])),
(DEFS ((env extend

finished
current id
v),

next id,
rest)))

| DEFS (finished,current id,[]) ->
FINISHED (env extend finished current id v)))

| ANYKONT (id) -> (raise (Abstract continuation referenced
(id,"value compute"))))

Appendix B

Stack Inspection Appendices

B.1 Equivalence of Fournet and Gordon’s evaluator and
the one presented herein

The model we use for reductions on λsec differs from that given by Fournet and
Gordon in three minor ways, as mentioned in section 4.2. Of these, the only
difference that requires explanation is our substitution of a static rewriting
step for their dynamic check on grant expressions. Briefly, this static check is
possible because all program code is a part of some component, and is therefore
initially annotated with permissions. Inspection of the semantics shows that a
frame expression always accompanies each grant expression, and therefore that
part of its behavior can be predicted. In particular, the dynamic restriction of
a grant’s permissions to that of the nearest enclosing frame expression can be
performed at the time of annotation.

To argue this equivalence more formally, we model the original semantics
with a modified reduction function 7→o. The definition of 7→o differs from that
of 7→ only in that the reference to OK is replaced by a reference to OKo. This
modified predicate dynamically restricts the permissions enabled by a grant to
those appearing in its nearest enclosing frame expression, using an auxiliary
Static function. The function 7→o therefore models the original semantics of
Fournet and Gordon.

Original Permissions Check OKo ⊆ 2P × E

OKo〈R, [[•]]〉
OKo〈R, [[E[• M]]]〉 iff OKo〈R, [[E]]〉
OKo〈R, [[E[V •]]]〉 iff OKo〈R, [[E]]〉
OKo〈R, [[E[S[•]]]]〉 iff R ⊆ S and OKo〈R, [[E]]〉

OKo〈R, [[E[grant S in •]]]〉 iff OKo〈R− Static〈S, [[E]]〉, [[E]]〉

89

90 APPENDIX B. STACK INSPECTION APPENDICES

where
Static〈R, [[•]]〉 = R

Static〈R, [[E[• M]]]〉 = Static〈R, [[E]]〉
Static〈R, [[E[V •]]]〉 = Static〈R, [[E]]〉
Static〈R, [[E[S[•]]]]〉 = R ∩ S

Static〈R, [[E[grant S in •]]]〉 = Static〈R, [[E]]〉

To extend the reduction function 7→o to an evaluation function, we must
prefix evaluation with an annotator as before. This annotator, Ao, differs from
A in that it does not restrict the permissions in grant expressions to those
attached to the entire component.

Definition 7 ((Evalo))

Evalo(C, . . .) = V if (Ao(C) · · ·) ∗7→o V

where

Ao〈R, [[x]]〉 = x
Ao〈R, [[λfx.M]]〉 = λfx.R[Ao〈R, [[M]]〉]
Ao〈R, [[M N]]〉 = Ao〈R, [[M]]〉 Ao〈R, [[N]]〉

Ao〈R, [[grant S in M]]〉 = grant S in Ao〈R, [[M]]〉
Ao〈R, [[test S then M else N]]〉 = test S then Ao〈R, [[M]]〉 else Ao〈R, [[N]]〉

Ao〈R, [[fail]]〉 = fail

With these definitions in place, we can state the claim that the Eval functions
are equal, modulo Fournet and Gordon’s notion of contextual equivalence (≡o).

Proposition 1 ((Static Permissions Check)) For any components (A0, . . .),

Eval(A0, . . .) = U iff Evalo(A0, . . .) = V where U ≡o V

Proof Sketch The proof proceeds in two steps. First, we establish the equiv-
alence (modulo contextual equivalence) of Evalo (the composition of Ao and
7→∗

o) and the composition of A and 7→∗
o. Second, we establish the equivalence

of this composition and Eval (the composition of A and 7→∗) when applied to
terms that satisfy a new predicate B, which describes the results of A.

The two steps require three lemmas:

1. For all programs (A, . . .), (A(A), . . .) ≡o (Ao(A), . . .).

2. For all programs (A, . . .), B(∅, [[(A(A) · · ·)]]).

3. For all terms M , B(∅, [[M]]) implies that M 7→o V iff M 7→ V .

Lemma 1 implements the first step, lemma 3 corresponds to the third step, and
lemma 2 provides the glue.

B.1. EQUIVALENCE OF FOURNET AND GORDON’S EVALUATOR
AND THE ONE PRESENTED HEREIN 91

Lemma 1 Proof Sketch: The translations Ao and A differ in their treat-
ment of grant; A restricts the permissions contained in the grant to those that
appear in the component’s permissions, and A doesn’t. This alteration may
be derived from the following equations in Fournet and Gordon’s contextual
equivalence theory:

Selected Equations

(Frame Frame Appl) : R1[R2[e1 e2]] ≡o R1[R2[R1[R2[e1]] R1[R2[e2]]]]
(Frame Frame) : R1 ⊇ R2 ⇒ R1[R2[e]] ≡o R2[e]
(Frame Grant) : R1[grant R2 in e] ≡o R1[grant R1 ∩R2 in e]

(Frame Grant Frame) : R1 ⊇ R2 ⇒ R1[grant R2 in R3[e]] ≡o R1[R3[grant R2 in e]]
(Frame Test Then) : R1 ⊇ R2 ⇒ R1[test R2 then e1 else e2]

≡o test R2 then R1[e1] else R1[e2]
(Frame Test Else) : ¬(R1 ⊇ R2) ⇒ R1[test R2 then e1 else e2] ≡o R1[e2]

For a given component 〈R,M〉, its annotation in Fournet and Gordon’s
system is Ao〈R,M〉. Since each top-level component expression M must be a
λ-expression, at least one frame expression lies outside any grant that the com-
ponent contains. Using the contextual equivalence theory, we can propagate
frame expressions inward past any syntactic constructions other than abstrac-
tion. The only interesting case is grant, where pushing the frame inward re-
quires the application of the Frame-Grant, Frame-Frame, Frame-Grant-Frame,
and Frame-Frame equations. Since all abstraction bodies are wrapped in frame
expressions with the component’s permissions, this calculation leaves each grant
expression wrapped with a frame expression. Then, the Frame-Grant rule jus-
tifies the intersection of the two sets of permissions. Finally, a reversal of the
calculation applied thus far may be used to remove the inserted frame expres-
sions. This leaves us with A(R, [[M]]). By this reasoning, substituting A for
Ao in the definition of Evalo yields contextually equivalent results.

To make the second major step of the proof, we introduce the predicate B.

Legal Grants Predicate B ⊆ 2P ×M

B〈R, [[x]]〉
B〈R, [[λfx.M]]〉 iff B〈∅, [[M]]〉
B〈R, [[M N]]〉 iff B〈R, [[M]]〉 B〈R, [[N]]〉
B〈R, [[S[M]]]〉 iff B〈S, [[M]]〉

B〈R, [[grant S in M]]〉 iff S ⊆ R and B〈R, [[M]]〉
B〈R, [[test S then M else N]]〉 iff B〈R, [[M]]〉 and B〈R, [[N]]〉

B〈R, [[fail]]〉

The predicate B checks two arguments: a set of permissions and an expres-
sion. It is satisfied1 when all grant expressions refer to permissions that appear

1The statement “M satisfies B” is taken to mean that B(∅, [[M]]), or (equivalently)
〈∅, [[M]]〉 ∈ B.

92 APPENDIX B. STACK INSPECTION APPENDICES

in the nearest enclosing frame expression, looking no further than the nearest
λ boundary.

Lemma 2 Proof Sketch: The predicate B formulates what the annota-
tor A enforces; namely, that grant expressions refer only to permissions ac-
corded to their components. The proof proceeds by induction on the size of
the program. The natural induction hypothesis states that for any R and
M , B(R,A(R, [[M]])). That is, the annotation of M with R satisfies B with
permission set R. However, we must strengthen the induction hypothesis for
λ-expressions to state that B(∅,A(R, [[λfx.M]]). In other words, the annotation
of a lambda term satisfies B with the empty permissions set.

Lemma 3 Proof Sketch: We must now prove that the relations 7→ and
7→o act identically on terms that satisfy B. First, we show that OK and OKo

are equivalent for evaluation contexts formed from expressions that satisfy B.
Second, a subject reduction proof shows that satisfaction of B is preserved by
both 7→ and 7→o.

Suppose M satisfies B, and M = E[N]. Then for any R, OKo(R, [[E]]) iff
OK(R, [[E]]). The satisfaction of B guarantees that Static acts as the identity;
the permissions attached to a grant are already restricted to those occurring in
the nearest enclosing frame.

The subject reduction proof is largely mechanical. The only interesting
cases are those in which a frame is removed and those involving a βv reduction.
In each case, the key observation is that λ expressions are self-contained. By
this we mean that the value of B(R, [[λfx.M]]) does not depend on R at all.
Therefore, substituting a value (that is, a lambda expression) that satisfies B
for any other expression does not change an expression that satisfies B into one
that doesn’t. Furthermore, this argument applies to the bodies of abstractions
as well. That is, if a term before a substitution satisfied B and contained
the term λfx.M , we may conclude that B(∅, [[M]]), which implies that for any
choice of R, B(R, [[M]]) also holds, and therefore that the substitution of the
term M for another term preserves satisfaction. Both of the reductions of
interest consist entirely of one or more such substitutions, and must therefore
preserve satisfaction of B. This argument applies without modification to both
7→ and 7→o.

With these two pieces in hand, a simple case analysis shows that 7→ and
7→o behave identically on terms that satisfy B.

Taken together, the three lemmas allow us to conclude that our proposition
holds. �

Appendix C

Aspect-Oriented Programming
using Continuation Marks

Nearly every programming language has a notion of modularity, and a cor-
responding unit of organization. Broadly speaking, Aspect-Oriented Program-
ming is the idea that for any such division, there will be conceptual elements of
functionality—or concerns—whose code must be spread across many different
units. Aspect-oriented programming, or AOP, proposes that the code for a
given concern be gathered in one place—called advice—with an accompanying
specification that describes how the aspect is to be applied to an existing body
of code.

The hope is that this alternative specification of a program will be better
able to divide code along the lines dictated by concerns, and therefore will be
easier to maintain and extend.

A second goal of aspect-oriented programming is that aspects may be nat-
ural units of extension. That is, modifying a program by adding an aspect
should be more robust than modifying the program itself.

This chapter contains three sections. In the first, I introduce some of the
current aspect-oriented programming tools. In the second, I describe how to im-
plement aspect-oriented language forms using continuation marks and macros.
In the third, I discuss the relationship between tail-calling and aspect-oriented
programming.

This chapter is partially based on work by Shriram Krishnamurthi and
David Tucker [45], who are responsible for the insight connecting AOP and
continuation marks.

C.1 Aspect-Oriented Programming

The past few years have seen an explosion of aspect-oriented frameworks and
toolsets, but the core ideas of AspectJ [30] remain at the center of most current
definitions of AOP.

93

94
APPENDIX C. ASPECT-ORIENTED PROGRAMMING USING

CONTINUATION MARKS

AOP Concepts

In the AspectJ model, a program’s execution consists of a sequence of execution
states. Rather than attempting to give a detailed semantics for the language,
AspectJ designates some identifiable execution subsequences as “join points.”
Method calls are considered join points, as are constructor calls, field refer-
ences, field mutations, and a host of other evaluation subranges in the inferred
semantics.

In AspectJ, a program’s execution is modified through the application of
advice at certain join points. To indicate which advice applies to which join
points, AspectJ defines a set of join point specifications, called “pointcut des-
ignators” or simply “pointcuts.” These specifications are defined using a spe-
cialized sublanguage that allows matching on join points. So, for instance, a
pointcut might specify all calls to a particular method, or all calls to construc-
tors matching a certain pattern, and so forth. The language also includes a
family of boolean pointcut combinators.

When a program’s execution is seen to match a given pointcut, the corre-
sponding advice is used to modify the program’s execution. This advice may
be evaluated before, after, or instead of the existing evaluation sequence. Ad-
vice therefore consists of two things: a form—before, after, around, or other
less common ones–and a piece of code, much like a method. This code is called
with arguments particular to the corresponding pointcut that inform the advice
about the execution state. For instance, advice acting on a method call will
be called with the method call’s arguments, among other things. The advice’s
form determines whether it is called before, after, or instead of (around) the
specified pointcut. The around specification is the most general, and comes
with an additional proceed binding that the advice may use to trigger the
evaluation of the original join point—albeit in a slightly different context.

AOP Examples

before(Point p, int x): target(p)
&& args(x)
&& call(void setX (int)) {

if (!p.assertX (x)) {
System.out.println("Illegal value for x"); return;

}
}

Figure C.1: A simple piece of advice

The simplest non-trivial examples of aspect-oriented programming are those
that add an orthogonal side-effect to a computation. Figure C.1 shows a simple

C.2. IMPLEMENTING AOP 95

example of an invariant check attached to a mutation method. This example
comes directly from the AspectJ documentation.

As their name suggests, pointcuts can also match elements of the execution
state other than the innermost control point. In particular, AspectJ provides
a unary pointcut combinator called cflow that applies the join point matching
mechanism to higher points on the dynamic call graph. That is, if a pointcut
A designates a call to a particular method, then cflow(A) would designate all
join points within the dynamic extend of that call. Using cflow and boolean
combination, it is possible to specify that a piece of advice, say, should be
applied only to calls to a method m() that occur within the dynamic extent of
a call to p(), except for those join points where the call to p() was within the
dynamic extent of a call another method q().

C.2 Implementing AOP

As the rich language of pointcuts makes clear, the basic intent of AOP is to
allow arbitrary interventions to the execution path of a running program. These
interventions can halt execution, alter execution, display portions of program
state, etc. In its basic mechanism, then, aspect-oriented programming of the
AspectJ kind bears a striking resemblance to debugging.

Since continuation marks were devised in order to implement debugging,
and more particularly to allow a program to observe nonlocal elements of its
dynamic execution state, they are also well-suited as a tool for implementing
aspect-oriented programming.

(define (my-method a b c)
. . .) 7→

(define (my-method a b c)
(w-c-m ’aop (list my-method a b c)

. . .))

Figure C.2: Capturing context information using continuation marks

The fundamental action of aspect-oriented programming is the matching
of the current execution state against a set of pointcut patterns. In order to
capture the information needed to perform this matching using continuation
marks, it suffices to place a continuation mark on entry to each procedure,
storing the procedure itself and the arguments the procedure was called with.
Figure C.2 illustrates this transformation. A call to (c-c-m ’aop) then retrieves
information about all existing context. This represents the dynamic execution
state in a form that can be used to match a pointcut.

In the simplest possible implementation of aspect-oriented programming
using continuation marks, the resulting program looks much like a stepper.
That is, a program is annotated with checks at every step of the program to
see whether any of the defined pointcuts match the current execution state.
If so, the corresponding piece of advice is evaluated, rather than the current
code.

96
APPENDIX C. ASPECT-ORIENTED PROGRAMMING USING

CONTINUATION MARKS

A more sophisticated implementation would remove checks at all points
that can be proven never to match one of the given pointcuts. Finally, it would
often be the case that many of the mark-placing w-c-m’s could be omitted,
in cases where the compiler determines that their omission cannot affect the
behavior of the program.

C.3 CFlow and Tail-Calling

AOP’s cflow and MzScheme’s continuation marks both make dynamic context
visible to a program’s inner context. That is, a program using a cflow pointcut
can cause the meaning of a method m() to be different when it is called in the
dynamic extent of a method p(). Likewise, continuation marks allow calls to
p() to place a mark that is visible to calls to m() that occur within that mark’s
dynamic extent.

However, a simple mark-placement protocol of the type described in the
prior section could fail to behave correctly for tail calls. Suppose, for instance,
that the method p() calls a method q() in tail position. If q() then has the
same context that the call to p() did, and places a continuation mark on that
context, then by the evaluation rules of continuation marks the earlier mark
would be replaced, and information about the dynamic extent of p() would be
lost.

It is not hard to work around this problem; just as in the case of exception
handlers or other parameters, it is straightforward to add to the context using
a stack-like extension, as extend-parameterization does for parameters.

Nevertheless, I believe that this raises questions that should not be so
quickly dismissed: is ‘dynamic extent’ always the right semantic expression
for a cflow -like construct? When defining exception handlers, dynamic extent
makes perfect sense: “I want to change the behavior of the program for a well-
defined period of time.” In the case of cflow, however, the question has more
to do with causality: “Was this call to m() caused by a call to p()?” In the
context of program execution, this question is not well phrased. After all, it
may well be that the call to m() was “caused” by a call to p() that returned
before m() was invoked. In AOP, as in debugging, it may be time to take
a closer look at execution history as a better metaphor for history than the
glimpse of the future afforded by the stack.

Bibliography

[1] Balzer, R. M. EXDAMS—EXtendable debugging and monitoring system.
In AFIPS 1969 Spring Joint Computer Conference, volume 34, pages 567–
580. AFIPS Press, May 1969.

[2] Barendregt, H. P. The Lambda Calculus: Its Syntax and Semantics, vol-
ume 103 of Studies in Logic and the Foundations of Mathematics. North-
Holland, revised edition, 1984.

[3] Benton, N., A. Kennedy and G. Russell. Compiling standard ML to Java
bytecodes. In ACM SIGPLAN International Conference on Functional
Programming, pages 129–140, 1998.

[4] Bernstein, K. L. and E. W. Stark. Operational semantics of a focusing
debugger. In Eleventh Conference on the Mathematical Foundations of
Programming Semantics, Volume 1 of Electronic Notes in Computer Sci-
ence. Elsevier, March 1995.

[5] Bertot, Y. Occurrences in debugger specifications. In ACM SIGPLAN
Conference on Programming Language Design and Implementation, 1991.

[6] Clements, J. and M. Felleisen. A tail-recursive semantics for stack in-
spections. In Degano, P., editor, Proceedings of the 12th European Sympo-
sium on Programming, volume 2618 of Lecture Notes in Computer Science,
pages 22–37. Springer, 2003.

[7] Clements, J. and M. Felleisen. A tail-recursive machine with stack in-
spection. ACM Transactions on Programming Languages and Systems,
26(6):1–24, November 2004.

[8] Clements, J., M. Felleisen, R. Findler, M. Flatt and S. Krishnamurthi.
Fostering little languages. Dr. Dobb’s Journal, March 2004. (Invited
Paper).

[9] Clements, J., M. Flatt and M. Felleisen. Modeling an algebraic stepper.
In Sands, D., editor, Proceedings of the 10th European Symposium on
Programming, volume 2028 of Lecture Notes in Computer Science, pages
320–334. Springer, 2001.

97

98 BIBLIOGRAPHY

[10] Clements, J., P. Graunke, S. Krishnamurthi and M. Felleisen. Little lan-
guages and their programming environments. In Proceedings of the Mon-
terey Workshop on Engineering Automation for Software Intensive System
Integration, pages 1–18, 2001.

[11] Clinger, W. D. Proper tail recursion and space efficiency. In ACM SIG-
PLAN Conference on Programming Language Design and Implementation,
pages 174–185, 1998.

[12] Danvy, O. and A. Filinski. Representing control: A study of the cps
tranformation. Mathematical Structures in Computer Science, 4:360–391,
1992.

[13] Erlingsson, U. and F. B. Schneider. IRM enforcement of java stack in-
spection. In IEEE Symposium on Security and Privacy, pages 246–255,
2000.

[14] Felleisen, M., R. B. Findler, M. Flatt and S. Krishnamurthi. How To
Design Programs. MIT Press, 2001.

[15] Felleisen, M. and M. Flatt. Programming languages
and their calculi. Unpublished Manuscript. Online at
<http://www.ccs.neu.edu/home/matthias/3810-w02/mono.ps.gz>,
1989–2002.

[16] Felleisen, M. and D. P. Friedman. Control operators, the secd-machine,
and the λ-calculus. In Wirsing, M., editor, Formal Description of Pro-
gramming Concepts III, pages 193–217. Elsevier Science Publishers B.V.,
1986.

[17] Felleisen, M. and R. Hieb. The revised report on the syntactic theories of
sequential control and state. Theoretical Computer Science, 1992.

[18] Ferguson, H. E. and E. Berner. Debugging systems at the source language
level. Communications of the ACM, 6(8):430–432, August 1963.

[19] Findler, R. B., J. Clements, C. Flanagan, M. Flatt, S. Krishnamurthi,
P. Steckler and M. Felleisen. Drscheme: A programming environment for
Scheme. Journal of Functional Programming, 12(2):159–182, 2002.

[20] Flanagan, C., A. Sabry, B. F. Duba and M. Felleisen. The essence of
compiling with continuations. In PLDI ’93: Proceedings of the ACM SIG-
PLAN 1993 conference on Programming language design and implemen-
tation, pages 237–247, New York, NY, USA, 1993. ACM Press.

[21] Flatt, M. PLT MzScheme: Language manual. Online at
<http://www.plt-scheme.org>, 1995–2002.

[22] Fournet, C. and A. D. Gordon. Stack inspection: theory and variants.
In ACM SIGPLAN Conference on Principles of Programming Languages,
pages 307–318, 2002.

99

[23] Gong, L. Inside Java 2 Platform Security. Sun Microsystems, 1999.

[24] Gordon, A. D. and D. Syme. Typing a multi-language intermediate code.
In ACM SIGPLAN Conference on Principles of Programming Languages,
pages 248–260, 2001.

[25] Hall, C. and J. O’Donnell. Debugging in a side effect free programming
environment. In ACM SIGPLAN symposium on Language issues in pro-
gramming environments, 1985.

[26] Karjoth, G. An operational semantics of Java 2 access control. In The
Computer Security Foundations Workshop, pages 224–232, 2000.

[27] Kellomaki, P. Psd—a portable scheme debugger, Feburary 1995.

[28] Kelsey, R., W. D. Clinger and J. Rees. Revised5 report on the algorithmic
language scheme. SIGPLAN Notices, 33(9):26–76, 1998.

[29] Kelsey, R. A. A correspondence between continuation passing style and
static single assignment form. ACM SIGPLAN Notices, 30(3):13–22,
March 1995.

[30] Kiczales, G., E. Hilsdale, J. Hugunin, M. Kersten, J. Palm and W. Gris-
wold. An overview of aspectj. In Proceedings of the European Conference
on Object-Oriented Programming, 2001.

[31] Kishon, A., P. Hudak and C. Consel. Monitoring semantics: A formal
framework for specifying, implementing, and reasoning about execution
monitors. In ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, pages 338–352, 1991.

[32] Leroy, X. The Objective Caml system release 3.08, 2004. On the web at
http://caml.inria.fr/pub/docs/manual-ocaml/index.html.

[33] Lindholm, T., F. Yellin, B. Joy and K. Walrath. The Java Virtual Machine
Specification. Addison-Wesley, 1997.

[34] Microsoft. Common language runtime SDK documentation. Online at
http://www.microsoft.com. Part of .NET SDK documentation, 2002.

[35] Milner, R. Communication and Concurrency. Prentice Hall, 1989.

[36] Naish, L. and T. Barbour. Towards a portable lazy functional declarative
debugger. In 19th Australasian Computer Science Conference, 1996.

[37] Plotkin, G. D. Call-by-name, call-by-value and the λ-calculus. Theoretical
Computer Science, pages 125–159, 1975.

[38] Pottier, F., C. Skalka and S. Smith. A systematic approach to static access
control. In European Symposium on Programming, pages 30–45, 2001.

100 BIBLIOGRAPHY

[39] Sansom, P. and S. Peyton-Jones. Formally-based profiling for higher-order
functional languages. ACM Transactions on Programming Languages and
Systems, 19(1), January 1997.

[40] Schinz, M. and M. Odersky. Tail call elimination on the Java virtual ma-
chine. In SIGPLAN BABEL Workshop on Multi-Language Infrastructure
and Interoperability, pages 155–168, 2001.

[41] Skalka, C. and S. Smith. Static enforcement of security with types. ACM
SIGPLAN Notices, 35(9):34–45, 2000.

[42] Sparud, J. and C. Runciman. Tracing lazy functional computations using
redex trails. In Symposium on Programming Language Implementation
and Logic Programming, 1997.

[43] Steele Jr., G. L. Debunking the “expensive procedure call” myth. In ACM
Conference, pages 153–162, 1977.

[44] Tolmach, A. Debugging Standard ML. PhD thesis, Department of Com-
puter Science, Princeton University, October 1992.

[45] Tucker, D. and S. Krishnamurthi. Pointcuts and advice in higher-order
languages. In Proceedings of the 2nd International Conference on Aspect-
Oriented Programming, 2003.

[46] Wallach, D., D. Balfanz, D. Dean and E. Felten. Extensible security ar-
chitectures for Java. In The 16th Symposium on Operating Systems Prin-
ciples, pages 116–128, october 1997.

[47] Wallach, D., E. Felten and A. Appel. The security architecture formerly
known as stack inspection: A security mechanism for language-based
systems. ACM Transactions on Software Engineering and Methodology,
9(4):341–378, October 2000.

