
Essentials of Compilation
An Incremental Approach

Jeremy G. Siek, Ryan R. Newton
Indiana University

with contributions from:
Carl Factora

Andre Kuhlenschmidt
Michael M. Vitousek

Michael Vollmer
Ryan Scott

Cameron Swords

April 2, 2019

ii

This book is dedicated to the programming
language wonks at Indiana University.

iv

Contents

1 Preliminaries 5
1.1 Abstract Syntax Trees and S-expressions 5
1.2 Grammars . 7
1.3 Pattern Matching . 9
1.4 Recursion . 10
1.5 Interpreters . 12
1.6 Example Compiler: a Partial Evaluator 14

2 Integers and Variables 17
2.1 The R1 Language . 17
2.2 The x86 Assembly Language 20
2.3 Planning the trip to x86 via the C0 language 24

2.3.1 The C0 Intermediate Language 27
2.3.2 The dialects of x86 . 28

2.4 Uniquify Variables . 28
2.5 Remove Complex Operators and Operands 30
2.6 Explicate Control . 31
2.7 Uncover Locals . 32
2.8 Select Instructions . 32
2.9 Assign Homes . 33
2.10 Patch Instructions . 34
2.11 Print x86 . 35

3 Register Allocation 37
3.1 Registers and Calling Conventions 38
3.2 Liveness Analysis . 39
3.3 Building the Interference Graph 40
3.4 Graph Coloring via Sudoku 42
3.5 Print x86 and Conventions for Registers 48

v

vi CONTENTS

3.6 Challenge: Move Biasing∗ . 48

4 Booleans and Control Flow 53
4.1 The R2 Language . 54
4.2 Type Checking R2 Programs 55
4.3 Shrink the R2 Language . 58
4.4 XOR, Comparisons, and Control Flow in x86 58
4.5 The C1 Intermediate Language 60
4.6 Explicate Control . 61
4.7 Select Instructions . 64
4.8 Register Allocation . 65

4.8.1 Liveness Analysis . 65
4.8.2 Build Interference . 66

4.9 Patch Instructions . 67
4.10 An Example Translation . 67
4.11 Challenge: Optimize Jumps∗ 67

5 Tuples and Garbage Collection 71
5.1 The R3 Language . 72
5.2 Garbage Collection . 73

5.2.1 Graph Copying via Cheney’s Algorithm 76
5.2.2 Data Representation 78
5.2.3 Implementation of the Garbage Collector 81

5.3 Expose Allocation . 83
5.4 Explicate Control and the C2 language 84
5.5 Uncover Locals . 85
5.6 Select Instructions . 87
5.7 Register Allocation . 90
5.8 Print x86 . 90

6 Functions 93
6.1 The R4 Language . 93
6.2 Functions in x86 . 95

6.2.1 Calling Conventions 95
6.2.2 Efficient Tail Calls . 98

6.3 Shrink R4 . 99
6.4 Reveal Functions . 99
6.5 Limit Functions . 99
6.6 Remove Complex Operators and Operands 100
6.7 Explicate Control and the C3 language 100

CONTENTS vii

6.8 Uncover Locals . 101
6.9 Select Instructions . 101
6.10 Uncover Live . 103
6.11 Build Interference Graph . 103
6.12 Patch Instructions . 103
6.13 Print x86 . 104
6.14 An Example Translation . 104

7 Lexically Scoped Functions 107
7.1 The R5 Language . 108
7.2 Interpreting R5 . 109
7.3 Type Checking R5 . 109
7.4 Closure Conversion . 111
7.5 An Example Translation . 112

8 Dynamic Typing 115
8.1 The R6 Language: Typed Racket + Any 118
8.2 Shrinking R6 . 122
8.3 Instruction Selection for R6 122
8.4 Register Allocation for R6 . 123
8.5 Compiling R7 to R6 . 123

9 Gradual Typing 125

10 Parametric Polymorphism 127

11 High-level Optimization 129

12 Appendix 131
12.1 Interpreters . 131
12.2 Utility Functions . 131

12.2.1 Testing . 132
12.3 x86 Instruction Set Quick-Reference 132

viii CONTENTS

List of Figures

1.1 The syntax of R0, a language of integer arithmetic. 9
1.2 Interpreter for the R0 language. 12
1.3 A partial evaluator for R0 expressions. 15

2.1 The syntax of R1, a language of integers and variables. 18
2.2 Interpreter for the R1 language. 19
2.3 A subset of the x86 assembly language (AT&T syntax). . . . 21
2.4 An x86 program equivalent to (+ 10 32). 21
2.5 An x86 program equivalent to (+ 52 (- 10)). 22
2.6 Memory layout of a frame. 23
2.7 Abstract syntax for x860 assembly. 24
2.8 Overview of the passes for compiling R1. 27
2.9 The C0 intermediate language. 28
2.10 Skeleton for the uniquify pass. 29

3.1 An example program for register allocation. 38
3.2 An example block annotated with live-after sets. 40
3.3 The interference graph of the example program. 42
3.4 A Sudoku game board and the corresponding colored graph. . 43
3.5 The saturation-based greedy graph coloring algorithm. 44
3.6 Diagram of the passes for R1 with register allocation. 47

4.1 The syntax of R2, extending R1 (Figure 2.1) with Booleans
and conditionals. 54

4.2 Interpreter for the R2 language. 56
4.3 Skeleton of a type checker for the R2 language. 57
4.4 The x861 language (extends x860 of Figure 2.7). 59
4.5 The C1 language, extending C0 with Booleans and conditionals. 60
4.6 Example translation from R2 to C1 via the explicate-control. 62
4.7 Example compilation of an if expression to x86. 68

ix

x LIST OF FIGURES

4.8 Diagram of the passes for R2, a language with conditionals. . 69

5.1 Example program that creates tuples and reads from them. . 72
5.2 The syntax of R3, extending R2 (Figure 4.1) with tuples. . . 72
5.3 Interpreter for the R3 language. 74
5.4 Type checker for the R3 language. 75
5.5 A copying collector in action. 77
5.6 Depiction of the Cheney algorithm copying the live tuples. . . 79
5.7 Maintaining a root stack to facilitate garbage collection. . . . 80
5.8 Representation for tuples in the heap. 81
5.9 The compiler’s interface to the garbage collector. 82
5.10 Output of the expose-allocation pass, minus all of the

has-type forms. 84
5.11 The C2 language, extending C1 (Figure 4.5) with vectors. . . 85
5.12 Output of uncover-locals for the running example. 86
5.13 The x862 language (extends x861 of Figure 4.4). 88
5.14 Output of the select-instructions pass. 89
5.15 Output of the print-x86 pass. 91
5.16 Diagram of the passes for R3, a language with tuples. 92

6.1 Syntax of R4, extending R3 (Figure 5.2) with functions. . . . 94
6.2 Example of using functions in R4. 94
6.3 Interpreter for the R4 language. 96
6.4 Memory layout of caller and callee frames. 97
6.5 The F1 language, an extension of R4 (Figure 6.1). 100
6.6 The C3 language, extending C2 (Figure 5.11) with functions. 101
6.7 The x863 language (extends x862 of Figure 5.13). 102
6.8 Example compilation of a simple function to x86. 105
6.9 Diagram of the passes for R4, a language with functions. . . . 106

7.1 Example of a lexically scoped function. 107
7.2 Syntax of R5, extending R4 (Figure 6.1) with lambda. 108
7.3 Example closure representation for the lambda’s in Figure 7.1. 109
7.4 Interpreter for R5. 110
7.5 Type checking the lambda’s in R5. 110
7.6 Example of closure conversion. 112
7.7 Diagram of the passes for R5, a language with lexically-scoped

functions. 113

8.1 Syntax of R7, an untyped language (a subset of Racket). . . . 116
8.2 Interpreter for the R7 language. UPDATE ME -Jeremy . . . 117

LIST OF FIGURES xi

8.3 Syntax of R6, extending R5 (Figure 7.2) with Any. 119
8.4 Type checker for parts of the R6 language. 120
8.5 Interpreter for R6. 121
8.6 Compiling R7 to R6. 124

xii LIST OF FIGURES

Preface

The tradition of compiler writing at Indiana University goes back to research
and courses about programming languages by Daniel Friedman in the 1970’s
and 1980’s. Dan had conducted research on lazy evaluation [Friedman and
Wise, 1976] in the context of Lisp [McCarthy, 1960] and then studied con-
tinuations [Felleisen and Friedman, 1986] and macros [Kohlbecker et al.,
1986] in the context of the Scheme [Sussman and Jr., 1975], a dialect of
Lisp. One of the students of those courses, Kent Dybvig, went on to build
Chez Scheme [Dybvig, 2006], a production-quality and efficient compiler for
Scheme. After completing his Ph.D. at the University of North Carolina,
Kent returned to teach at Indiana University. Throughout the 1990’s and
2000’s, Kent continued development of Chez Scheme and taught the com-
piler course.

The compiler course evolved to incorporate novel pedagogical ideas while
also including elements of effective real-world compilers. One of Dan’s ideas
was to split the compiler into many small “passes” so that the code for each
pass would be easy to understood in isolation. (In contrast, most compilers
of the time were organized into only a few monolithic passes for reasons of
compile-time efficiency.) Kent, with later help from his students Dipanwita
Sarkar and Andrew Keep, developed infrastructure to support this approach
and evolved the course, first to use micro-sized passes and then into even
smaller nano passes [Sarkar et al., 2004, Keep, 2012]. Jeremy Siek was a
student in this compiler course in the early 2000’s, as part of his Ph.D.
studies at Indiana University. Needless to say, Jeremy enjoyed the course
immensely!

One of Jeremy’s classmates, Abdulaziz Ghuloum, observed that the
front-to-back organization of the course made it difficult for students to
understand the rationale for the compiler design. Abdulaziz proposed an
incremental approach in which the students build the compiler in stages;
they start by implementing a complete compiler for a very small subset of
the input language, then in each subsequent stage they add a feature to the

1

2 LIST OF FIGURES

input language and add or modify passes to handle the new feature [Ghu-
loum, 2006]. In this way, the students see how the language features motivate
aspects of the compiler design.

After graduating from Indiana University in 2005, Jeremy went on to
teach at the University of Colorado. He adapted the nano pass and incre-
mental approaches to compiling a subset of the Python language [Siek and
Chang, 2012]. Python and Scheme are quite different on the surface but
there is a large overlap in the compiler techniques required for the two lan-
guages. Thus, Jeremy was able to teach much of the same content from the
Indiana compiler course. He very much enjoyed teaching the course orga-
nized in this way, and even better, many of the students learned a lot and
got excited about compilers.

Jeremy returned to teach at Indiana University in 2013. In his absence
the compiler course had switched from the front-to-back organization to
a back-to-front organization. Seeing how well the incremental approach
worked at Colorado, he started porting and adapting the structure of the
Colorado course back into the land of Scheme. In the meantime Indiana had
moved on from Scheme to Racket, so the course is now about compiling a
subset of Racket (and Typed Racket) to the x86 assembly language. The
compiler is implemented in Racket 7.1 [Flatt and PLT, 2014].

This is the textbook for the incremental version of the compiler course at
Indiana University (Spring 2016 - present) and it is the first open textbook
for an Indiana compiler course. With this book we hope to make the Indiana
compiler course available to people that have not had the chance to study in
Bloomington in person. Many of the compiler design decisions in this book
are drawn from the assignment descriptions of Dybvig and Keep [2010]. We
have captured what we think are the most important topics from Dybvig and
Keep [2010] but we have omitted topics that we think are less interesting
conceptually and we have made simplifications to reduce complexity. In
this way, this book leans more towards pedagogy than towards the absolute
efficiency of the generated code. Also, the book differs in places where we
saw the opportunity to make the topics more fun, such as in relating register
allocation to Sudoku (Chapter 3).

Prerequisites

The material in this book is challenging but rewarding. It is meant to
prepare students for a lifelong career in programming languages. We do
not recommend this book for students who want to dabble in programming

LIST OF FIGURES 3

languages.
The book uses the Racket language both for the implementation of the

compiler and for the language that is compiled, so a student should be
proficient with Racket (or Scheme) prior to reading this book. There are
many other excellent resources for learning Scheme and Racket [Dybvig,
1987, Abelson and Sussman, 1996, Friedman and Felleisen, 1996, Felleisen
et al., 2001, 2013, Flatt et al., 2014]. It is helpful but not necessary for the
student to have prior exposure to x86 (or x86-64) assembly language [Intel,
2015], as one might obtain from a computer systems course [Bryant and
O’Hallaron, 2005, 2010]. This book introduces the parts of x86-64 assembly
language that are needed.

Acknowledgments
Many people have contributed to the ideas, techniques, organization, and
teaching of the materials in this book. We especially thank the following
people.

• Bor-Yuh Evan Chang

• Kent Dybvig

• Daniel P. Friedman

• Ronald Garcia

• Abdulaziz Ghuloum

• Jay McCarthy

• Dipanwita Sarkar

• Andrew Keep

• Oscar Waddell

• Michael Wollowski

Jeremy G. Siek
http://homes.soic.indiana.edu/jsiek

http://homes.soic.indiana.edu/jsiek

4 LIST OF FIGURES

1

Preliminaries

In this chapter, we review the basic tools that are needed for implementing
a compiler. We use abstract syntax trees (ASTs), which refer to data struc-
tures in the compilers memory, rather than programs as they are stored on
disk, in concrete syntax. ASTs can be represented in many different ways, de-
pending on the programming language used to write the compiler. Because
this book uses Racket (http://racket-lang.org), a descendant of Lisp,
we use S-expressions to represent programs (Section 1.1). We use grammars
to defined programming languages (Section 1.2) and pattern matching to
inspect individual nodes in an AST (Section 1.3). We use recursion to con-
struct and deconstruct entire ASTs (Section 1.4). This chapter provides an
brief introduction to these ideas.

1.1 Abstract Syntax Trees and S-expressions

The primary data structure that is commonly used for representing pro-
grams is the abstract syntax tree (AST). When considering some part of a
program, a compiler needs to ask what kind of part it is and what sub-parts
it has. For example, the program on the left, represented by an S-expression,
corresponds to the AST on the right.

5

http://racket-lang.org

6 1. PRELIMINARIES

(+ (read) (- 8))

+

read -

8

(1.1)

We shall use the standard terminology for trees: each circle above is called
a node. The arrows connect a node to its children (which are also nodes).
The top-most node is the root. Every node except for the root has a parent
(the node it is the child of). If a node has no children, it is a leaf node.
Otherwise it is an internal node.

Recall that an symbolic expression (S-expression) is either

1. an atom, or

2. a pair of two S-expressions, written (e1.e2), where e1 and e2 are each
an S-expression.

An atom can be a symbol, such as ‘hello, a number, the null value ’(),
etc. We can create an S-expression in Racket simply by writing a backquote
(called a quasi-quote in Racket). followed by the textual representation of
the S-expression. It is quite common to use S-expressions to represent a list,
such as a, b, c in the following way:

‘(a . (b . (c . ())))

Each element of the list is in the first slot of a pair, and the second slot
is either the rest of the list or the null value, to mark the end of the list.
Such lists are so common that Racket provides special notation for them
that removes the need for the periods and so many parenthesis:

‘(a b c)

For another example, an S-expression to represent the AST (1.1) is created
by the following Racket expression:

‘(+ (read) (- 8))

When using S-expressions to represent ASTs, the convention is to represent
each AST node as a list and to put the operation symbol at the front of the
list. The rest of the list contains the children. So in the above case, the root

1.2. GRAMMARS 7

AST node has operation ‘+ and its two children are ‘(read) and ‘(- 8),
just as in the diagram (1.1).

To build larger S-expressions one often needs to splice together sev-
eral smaller S-expressions. Racket provides the comma operator to splice
an S-expression into a larger one. For example, instead of creating the
S-expression for AST (1.1) all at once, we could have first created an S-
expression for AST (1.5) and then spliced that into the addition S-expression.

(define ast1.4 ‘(- 8))
(define ast1.1 ‘(+ (read) ,ast1.4))

In general, the Racket expression that follows the comma (splice) can be
any expression that computes an S-expression.

When deciding how to compile program (1.1), we need to know that
the operation associated with the root node is addition and that it has two
children: read and a negation. The AST data structure directly supports
these queries, as we shall see in Section 1.3, and hence is a good choice for
use in compilers. In this book, we will often write down the S-expression
representation of a program even when we really have in mind the AST
because the S-expression is more concise. We recommend that, in your
mind, you always think of programs as abstract syntax trees.

1.2 Grammars

A programming language can be thought of as a set of programs. The
set is typically infinite (one can always create larger and larger programs),
so one cannot simply describe a language by listing all of the programs
in the language. Instead we write down a set of rules, a grammar, for
building programs. We shall write our rules in a variant of Backus-Naur
Form (BNF) [Backus et al., 1960, Knuth, 1964]. As an example, we describe
a small language, named R0, of integers and arithmetic operations. The first
rule says that any integer is an expression, exp, in the language:

exp ::= int (1.2)

Each rule has a left-hand-side and a right-hand-side. The way to read a rule
is that if you have all the program parts on the right-hand-side, then you
can create an AST node and categorize it according to the left-hand-side.
A name such as exp that is defined by the grammar rules is a non-terminal.
The name int is a also a non-terminal, however, we do not define int be-
cause the reader already knows what an integer is. Further, we make the

8 1. PRELIMINARIES

simplifying design decision that all of the languages in this book only handle
machine-representable integers. On most modern machines this corresponds
to integers represented with 64-bits, i.e., the in range −263 to 263− 1. How-
ever, we restrict this range further to match the Racket fixnum datatype,
which allows 63-bit integers on a 64-bit machine.

The second grammar rule is the read operation that receives an input
integer from the user of the program.

exp ::= (read) (1.3)

The third rule says that, given an exp node, you can build another exp
node by negating it.

exp ::= (- exp) (1.4)

Symbols such as - in typewriter font are terminal symbols and must literally
appear in the program for the rule to be applicable.

We can apply the rules to build ASTs in the R0 language. For example,
by rule (1.2), 8 is an exp, then by rule (1.4), the following AST is an exp.

(- 8)

–

8

(1.5)

The following grammar rule defines addition expressions:

exp ::= (+ exp exp) (1.6)

Now we can see that the AST (1.1) is an exp in R0. We know that (read) is
an exp by rule (1.3) and we have shown that (- 8) is an exp, so we can apply
rule (1.6) to show that (+ (read) (- 8)) is an exp in the R0 language.

If you have an AST for which the above rules do not apply, then the
AST is not in R0. For example, the AST (- (read) (+ 8)) is not in R0
because there are no rules for + with only one argument, nor for - with two
arguments. Whenever we define a language with a grammar, we implicitly
mean for the language to be the smallest set of programs that are justified
by the rules. That is, the language only includes those programs that the
rules allow.

The last grammar rule for R0 states that there is a program node to
mark the top of the whole program:

R0 ::= (program exp)

1.3. PATTERN MATCHING 9

exp ::= int | (read) | (- exp) | (+ exp exp)
R0 ::= (program exp)

Figure 1.1: The syntax of R0, a language of integer arithmetic.

The read-program function provided in utilities.rkt reads programs
in from a file (the sequence of characters in the concrete syntax of Racket)
and parses them into the abstract syntax tree. The concrete syntax does
not include a program form; that is added by the read-program function as
it creates the AST. See the description of read-program in Appendix 12.2
for more details.

It is common to have many rules with the same left-hand side, such as
exp in the grammar for R0, so there is a vertical bar notation for gathering
several rules, as shown in Figure 1.1. Each clause between a vertical bar is
called an alternative.

1.3 Pattern Matching

As mentioned above, one of the operations that a compiler needs to perform
on an AST is to access the children of a node. Racket provides the match
form to access the parts of an S-expression. Consider the following example
and the output on the right.

(match ast1.1
[‘(,op ,child1 ,child2)
(print op) (newline)
(print child1) (newline)
(print child2)])

’+
’(read)
’(- 8)

The match form takes AST (1.1) and binds its parts to the three variables
op, child1, and child2. In general, a match clause consists of a pattern
and a body. The pattern is a quoted S-expression that may contain pattern-
variables (each one preceded by a comma). The pattern is not the same thing
as a quasiquote expression used to construct ASTs, however, the similarity
is intentional: constructing and deconstructing ASTs uses similar syntax.
While the pattern uses a restricted syntax, the body of the match clause
may contain any Racket code whatsoever.

A match form may contain several clauses, as in the following function
leaf? that recognizes when an R0 node is a leaf. The match proceeds

10 1. PRELIMINARIES

through the clauses in order, checking whether the pattern can match the
input S-expression. The body of the first clause that matches is executed.
The output of leaf? for several S-expressions is shown on the right. In the
below match, we see another form of pattern: the (? fixnum?) applies
the predicate fixnum? to the input S-expression to see if it is a machine-
representable integer.

(define (leaf? arith)
(match arith
[(? fixnum?) #t]
[‘(read) #t]
[‘(- ,c1) #f]
[‘(+ ,c1 ,c2) #f]))

(leaf? ‘(read))
(leaf? ‘(- 8))
(leaf? ‘(+ (read) (- 8)))

#t
#f
#f

1.4 Recursion

Programs are inherently recursive in that an R0 expression (exp) is made up
of smaller expressions. Thus, the natural way to process an entire program
is with a recursive function. As a first example of such a function, we define
exp? below, which takes an arbitrary S-expression, sexp, and determines
whether or not sexp is an R0 expression. Note that each match clause
corresponds to one grammar rule the body of each clause makes a recursive
call for each child node. This pattern of recursive function is so common that
it has a name, structural recursion. In general, when a recursive function
is defined using a sequence of match clauses that correspond to a grammar,
and each clause body makes a recursive call on each child node, then we
say the function is defined by structural recursion. Below we also define a
second function, named R0?, determines whether an S-expression is an R0
program.

1.4. RECURSION 11

(define (exp? sexp)
(match sexp
[(? fixnum?) #t]
[‘(read) #t]
[‘(- ,e) (exp? e)]
[‘(+ ,e1 ,e2)
(and (exp? e1) (exp? e2))]

[else #f]))

(define (R0? sexp)
(match sexp
[‘(program ,e) (exp? e)]
[else #f]))

(R0? ‘(program (+ (read) (- 8))))
(R0? ‘(program (- (read) (+ 8))))

#t
#f

Indeed, the structural recursion follows the grammar itself. We can
generally expect to write a recursive function to handle each non-terminal
in the grammar.1

You may be tempted to write the program with just one function, like
this:

(define (R0? sexp)
(match sexp
[(? fixnum?) #t]
[‘(read) #t]
[‘(- ,e) (R0? e)]
[‘(+ ,e1 ,e2) (and (R0? e1) (R0? e2))]
[‘(program ,e) (R0? e)]
[else #f]))

Sometimes such a trick will save a few lines of code, especially when it
comes to the program wrapper. Yet this style is generally not recommended
because it can get you into trouble. For instance, the above function is sub-
tly wrong: (R0? ‘(program (program 3))) will return true, when it should
return false.

1This principle of structuring code according to the data definition is advocated in the
book How to Design Programs http://www.ccs.neu.edu/home/matthias/HtDP2e/.

http://www.ccs.neu.edu/home/matthias/HtDP2e/

12 1. PRELIMINARIES

(define (interp-exp e)
(match e
[(? fixnum?) e]
[‘(read)
(let ([r (read)])
(cond [(fixnum? r) r]

[else (error ’interp-R0 "input␣not␣an␣integer" r)]))]
[‘(- ,e1) (fx- 0 (interp-exp e1))]
[‘(+ ,e1 ,e2) (fx+ (interp-exp e1) (interp-exp e2))]
))

(define (interp-R0 p)
(match p
[‘(program ,e) (interp-exp e)]))

Figure 1.2: Interpreter for the R0 language.

1.5 Interpreters
The meaning, or semantics, of a program is typically defined in the spec-
ification of the language. For example, the Scheme language is defined in
the report by Sperber et al. [2009]. The Racket language is defined in its
reference manual [Flatt and PLT, 2014]. In this book we use an interpreter
to define the meaning of each language that we consider, following Reynold’s
advice in this regard [Reynolds, 1972]. Here we warm up by writing an inter-
preter for the R0 language, which serves as a second example of structural
recursion. The interp-R0 function is defined in Figure 1.2. The body of the
function is a match on the input program p and then a call to the interp-exp
helper function, which in turn has one match clause per grammar rule for
R0 expressions.

Let us consider the result of interpreting a few R0 programs. The fol-
lowing program simply adds two integers.

(+ 10 32)

The result is 42, as you might have expected. Here we have written the
program in concrete syntax, whereas the parsed abstract syntax would be
the slightly different: (program (+ 10 32)).

The next example demonstrates that expressions may be nested within
each other, in this case nesting several additions and negations.

(+ 10 (- (+ 12 20)))

1.5. INTERPRETERS 13

What is the result of the above program?
As mentioned previously, the R0 language does not support arbitrarily-

large integers, but only 63-bit integers, so we interpret the arithmetic op-
erations of R0 using fixnum arithmetic. What happens when we run the
following program?

(define large 999999999999999999)
(interp-R0 ‘(program (+ (+ (+ ,large ,large) (+ ,large ,large))

(+ (+ ,large ,large) (+ ,large ,large)))))

It produces an error:
fx+: result is not a fixnum

We shall use the convention that if the interpreter for a language produces
an error when run on a program, then the meaning of the program is un-
specified. The compiler for the language is under no obligation for such a
program; it can produce an executable that does anything.
Moving on, the read operation prompts the user of the program for an
integer. If we interpret the AST (1.1) and give it the input 50

(interp-R0 ast1.1)

we get the answer to life, the universe, and everything:
42

We include the read operation in R0 so a clever student cannot implement
a compiler for R0 simply by running the interpreter at compilation time to
obtain the output and then generating the trivial code to return the output.
(A clever student did this in a previous version of the course.)

The job of a compiler is to translate a program in one language into a
program in another language so that the output program behaves the same
way as the input program. This idea is depicted in the following diagram.
Suppose we have two languages, L1 and L2, and an interpreter for each
language. Suppose that the compiler translates program P1 in language
L1 into program P2 in language L2. Then interpreting P1 and P2 on their
respective interpreters with input i should yield the same output o.

P1 P2

o

compile

interp-L2(i)interp-L1(i)
(1.7)

14 1. PRELIMINARIES

In the next section we see our first example of a compiler, which is another
example of structural recursion.

1.6 Example Compiler: a Partial Evaluator
In this section we consider a compiler that translates R0 programs into R0
programs that are more efficient, that is, this compiler is an optimizer. Our
optimizer will accomplish this by trying to eagerly compute the parts of the
program that do not depend on any inputs. For example, given the following
program

(+ (read) (- (+ 5 3)))

our compiler will translate it into the program
(+ (read) -8)

Figure 1.3 gives the code for a simple partial evaluator for the R0 lan-
guage. The output of the partial evaluator is an R0 program, which we build
up using a combination of quasiquotes and commas. (Though no quasiquote
is necessary for integers.) In Figure 1.3, the normal structural recursion is
captured in the main pe-arith function whereas the code for partially eval-
uating negation and addition is factored into two separate helper functions:
pe-neg and pe-add. The input to these helper functions is the output of
partially evaluating the children nodes.

Our code for pe-neg and pe-add implements the simple idea of checking
whether their arguments are integers and if they are, to go ahead and per-
form the arithmetic. Otherwise, we use quasiquote to create an AST node
for the appropriate operation (either negation or addition) and use comma
to splice in the child nodes.

To gain some confidence that the partial evaluator is correct, we can test
whether it produces programs that get the same result as the input program.
That is, we can test whether it satisfies Diagram (1.7). The following code
runs the partial evaluator on several examples and tests the output program.
The assert function is defined in Appendix 12.2.
(define (test-pe p)
(assert "testing␣pe-arith"

(equal? (interp-R0 p) (interp-R0 (pe-arith p)))))

(test-pe ‘(+ (read) (- (+ 5 3))))
(test-pe ‘(+ 1 (+ (read) 1)))
(test-pe ‘(- (+ (read) (- 5))))

1.6. EXAMPLE COMPILER: A PARTIAL EVALUATOR 15

(define (pe-neg r)
(cond [(fixnum? r) (fx- 0 r)]

[else ‘(- ,r)]))

(define (pe-add r1 r2)
(cond [(and (fixnum? r1) (fixnum? r2)) (fx+ r1 r2)]

[else ‘(+ ,r1 ,r2)]))

(define (pe-arith e)
(match e
[(? fixnum?) e]
[‘(read) ‘(read)]
[‘(- ,e1)
(pe-neg (pe-arith e1))]

[‘(+ ,e1 ,e2)
(pe-add (pe-arith e1) (pe-arith e2))]))

Figure 1.3: A partial evaluator for R0 expressions.

Exercise 1. We challenge the reader to improve on the simple partial eval-
uator in Figure 1.3 by replacing the pe-neg and pe-add helper functions
with functions that know more about arithmetic. For example, your partial
evaluator should translate

(+ 1 (+ (read) 1))

into
(+ 2 (read))

To accomplish this, we recommend that your partial evaluator produce out-
put that takes the form of the residual non-terminal in the following gram-
mar.

exp ::= (read) | (- (read)) | (+ exp exp)
residual ::= int | (+ int exp) | exp

16 1. PRELIMINARIES

2

Integers and Variables

This chapter concerns the challenge of compiling a subset of Racket that
includes integer arithmetic and local variable binding, which we name R1,
to x86-64 assembly code [Intel, 2015]. Henceforth we shall refer to x86-64
simply as x86. The chapter begins with a description of the R1 language
(Section 2.1) followed by a description of x86 (Section 2.2). The x86 assem-
bly language is quite large, so we only discuss what is needed for compiling
R1. We introduce more of x86 in later chapters. Once we have introduced
R1 and x86, we reflect on their differences and come up with a plan to break
down the translation from R1 to x86 into a handful of steps (Section 2.3).
The rest of the sections in this Chapter give detailed hints regarding each
step (Sections 2.4 through 2.10). We hope to give enough hints that the
well-prepared reader can implement a compiler from R1 to x86 while at the
same time leaving room for some fun and creativity.

2.1 The R1 Language

The R1 language extends the R0 language (Figure 1.1) with variable defi-
nitions. The syntax of the R1 language is defined by the grammar in Fig-
ure 2.1. The non-terminal var may be any Racket identifier. As in R0,
read is a nullary operator, - is a unary operator, and + is a binary opera-
tor. Similar to R0, the R1 language includes the program construct to mark
the top of the program, which is helpful in parts of the compiler. The info
field of the program construct contain an association list that is used to
communicating auxiliary data from one step of the compiler to the next.

The R1 language is rich enough to exhibit several compilation techniques
but simple enough so that the reader, together with couple friends, can

17

18 2. INTEGERS AND VARIABLES

exp ::= int | (read) | (- exp) | (+ exp exp)
| var | (let ([var exp]) exp)

R1 ::= (program info exp)

Figure 2.1: The syntax of R1, a language of integers and variables.

implement a compiler for it in a week or two of part-time work. To give the
reader a feeling for the scale of this first compiler, the instructor solution for
the R1 compiler is less than 500 lines of code.

Let us dive into the description of the R1 language. The let construct
defines a variable for use within its body and initializes the variable with
the value of an expression. So the following program initializes x to 32 and
then evaluates the body (+ 10 x), producing 42.

(program ()
(let ([x (+ 12 20)]) (+ 10 x)))

When there are multiple let’s for the same variable, the closest enclosing
let is used. That is, variable definitions overshadow prior definitions. Con-
sider the following program with two let’s that define variables named x.
Can you figure out the result?

(program ()
(let ([x 32]) (+ (let ([x 10]) x) x)))

For the purposes of showing which variable uses correspond to which defini-
tions, the following shows the x’s annotated with subscripts to distinguish
them. Double check that your answer for the above is the same as your
answer for this annotated version of the program.

(program ()
(let ([x1 32]) (+ (let ([x2 10]) x2) x1)))

The initializing expression is always evaluated before the body of the let,
so in the following, the read for x is performed before the read for y. Given
the input 52 then 10, the following produces 42 (and not -42).

(program ()
(let ([x (read)]) (let ([y (read)]) (+ x (- y)))))

Figure 2.2 shows the interpreter for the R1 language. It extends the
interpreter for R0 with two new match clauses for variables and for let. For
let, we will need a way to communicate the initializing value of a variable
to all the uses of a variable. To accomplish this, we maintain a mapping
from variables to values, which is traditionally called an environment. For

2.1. THE R1 LANGUAGE 19

(define (interp-exp env)
(lambda (e)
(match e
[(? fixnum?) e]
[‘(read)
(define r (read))
(cond [(fixnum? r) r]

[else (error ’interp-R1 "expected␣an␣integer" r)])]
[‘(- ,e)
(define v ((interp-exp env) e))
(fx- 0 v)]
[‘(+ ,e1 ,e2)
(define v1 ((interp-exp env) e1))
(define v2 ((interp-exp env) e2))
(fx+ v1 v2)]
[(? symbol?) (lookup e env)]
[‘(let ([,x ,e]) ,body)
(define new-env (cons (cons x ((interp-exp env) e)) env))
((interp-exp new-env) body)]
)))

(define (interp-R1 env)
(lambda (p)
(match p
[‘(program ,info ,e) ((interp-exp ’()) e)])))

Figure 2.2: Interpreter for the R1 language.

simplicity, here we use an association list to represent the environment. The
interp-R1 function takes the current environment, env, as an extra param-
eter. When the interpreter encounters a variable, it finds the corresponding
value using the lookup function (Appendix 12.2). When the interpreter
encounters a let, it evaluates the initializing expression, extends the envi-
ronment with the result bound to the variable, then evaluates the body of
the let.

The goal for this chapter is to implement a compiler that translates
any program P1 in the R1 language into an x86 assembly program P2 such
that P2 exhibits the same behavior on an x86 computer as the R1 program
running in a Racket implementation. That is, they both output the same

20 2. INTEGERS AND VARIABLES

integer n.

P1 P2

n

compile

interp-R1 interp-x86

In the next section we introduce enough of the x86 assembly language to
compile R1.

2.2 The x86 Assembly Language

An x86 program is a sequence of instructions. The program is stored in the
computer’s memory and the program counter points to the address of the
next instruction to be executed. For most instructions, once the instruction
is executed, the program counter is incremented to point to the immedi-
ately following instruction in memory. Each instruction may refer to integer
constants (called immediate values), variables called registers, and instruc-
tions may load and store values into memory. For our purposes, we can
think of the computer’s memory as a mapping of 64-bit addresses to 64-bit
values1. Figure 2.3 defines the syntax for the subset of the x86 assembly
language needed for this chapter. We use the AT&T syntax expected by
the GNU assembler, which comes with the gcc compiler that we use for
compiling assembly code to machine code. Also, Appendix 12.3 includes
a quick-reference of all the x86 instructions used in this book and a short
explanation of what they do.

An immediate value is written using the notation $n where n is an in-
teger. A register is written with a % followed by the register name, such
as %rax. An access to memory is specified using the syntax n(%r), which
obtains the address stored in register r and then offsets the address by n
bytes (8 bits). The address is then used to either load or store to memory
depending on whether it occurs as a source or destination argument of an
instruction.

An arithmetic instruction, such as addq s, d, reads from the source s and
destination d, applies the arithmetic operation, then writes the result in d.

1This simple story suffices for describing how sequential programs access memory but is
not sufficient for multi-threaded programs. However, multi-threaded execution is beyond
the scope of this book.

2.2. THE X86 ASSEMBLY LANGUAGE 21

reg ::= rsp | rbp | rax | rbx | rcx | rdx | rsi | rdi |
r8 | r9 | r10 | r11 | r12 | r13 | r14 | r15

arg ::= $int | %reg | int(%reg)
instr ::= addq arg, arg | subq arg, arg | negq arg | movq arg, arg |

callq label | pushq arg | popq arg | retq | label: instr
prog ::= .globl main

main: instr+

Figure 2.3: A subset of the x86 assembly language (AT&T syntax).

.globl main
main:

movq $10, %rax
addq $32, %rax
retq

Figure 2.4: An x86 program equivalent to (+ 10 32).

The move instruction, movq s d reads from s and stores the result in d. The
callq label instruction executes the procedure specified by the label.

Figure 2.4 depicts an x86 program that is equivalent to (+ 10 32). The
globl directive says that the main procedure is externally visible, which is
necessary so that the operating system can call it. The label main: indicates
the beginning of the main procedure which is where the operating system
starts executing this program. The instruction movq $10, %rax puts 10 into
register rax. The following instruction addq $32, %rax adds 32 to the 10 in
rax and puts the result, 42, back into rax.

The last instruction, retq, finishes the main function by returning the
integer in rax to the operating system. The operating system interprets this
integer as the program’s exit code. By convention, an exit code of 0 indicates
the program was successful, and all other exit codes indicate various errors.
Nevertheless, we return the result of the program as the exit code.

Unfortunately, x86 varies in a couple ways depending on what operating
system it is assembled in. The code examples shown here are correct on
Linux and most Unix-like platforms, but when assembled on Mac OS X,
labels like main must be prefixed with an underscore, as in _main.

We exhibit the use of memory for storing intermediate results in the next
example. Figure 2.5 lists an x86 program that is equivalent to (+ 52 (- 10)).

22 2. INTEGERS AND VARIABLES

start:
movq $10, -8(%rbp)
negq -8(%rbp)
movq -8(%rbp), %rax
addq $52, %rax
jmp conclusion

.globl main
main:

pushq %rbp
movq %rsp, %rbp
subq $16, %rsp
jmp start

conclusion:
addq $16, %rsp
popq %rbp
retq

Figure 2.5: An x86 program equivalent to (+ 52 (- 10)).

This program uses a region of memory called the procedure call stack (or
stack for short). The stack consists of a separate frame for each procedure
call. The memory layout for an individual frame is shown in Figure 2.6. The
register rsp is called the stack pointer and points to the item at the top of
the stack. The stack grows downward in memory, so we increase the size of
the stack by subtracting from the stack pointer. The frame size is required
to be a multiple of 16 bytes. In the context of a procedure call, the return
address is the next instruction on the caller side that comes after the call
instruction. During a function call, the return address is pushed onto the
stack. The register rbp is the base pointer which serves two purposes: 1)
it saves the location of the stack pointer for the calling procedure and 2) it
is used to access variables associated with the current procedure. The base
pointer of the calling procedure is pushed onto the stack after the return
address. We number the variables from 1 to n. Variable 1 is stored at
address −8(%rbp), variable 2 at −16(%rbp), etc.

Getting back to the program in Figure 2.5, the first three instructions
are the typical prelude for a procedure. The instruction pushq %rbp saves
the base pointer for the procedure that called the current one onto the stack
and subtracts 8 from the stack pointer. The second instruction movq %rsp,
%rbp changes the base pointer to the top of the stack. The instruction subq

2.2. THE X86 ASSEMBLY LANGUAGE 23

Position Contents
8(%rbp) return address
0(%rbp) old rbp
-8(%rbp) variable 1

-16(%rbp) variable 2
.

0(%rsp) variable n

Figure 2.6: Memory layout of a frame.

$16, %rsp moves the stack pointer down to make enough room for storing
variables. This program just needs one variable (8 bytes) but because the
frame size is required to be a multiple of 16 bytes, it rounds to 16 bytes.

The four instructions under the label start carry out the work of com-
puting (+ 52 (- 10)). The first instruction movq $10, -8(%rbp) stores 10 in
variable 1. The instruction negq -8(%rbp) changes variable 1 to −10. The
movq $52, %rax places 52 in the register rax and addq -8(%rbp), %rax
adds the contents of variable 1 to rax, at which point rax contains 42.

The three instructions under the label conclusion are the typical finale
of a procedure. The first two are necessary to get the state of the machine
back to where it was at the beginning of the procedure. The addq $16,
%rsp instruction moves the stack pointer back to point at the old base
pointer. The amount added here needs to match the amount that was
subtracted in the prelude of the procedure. Then popq %rbp returns the old
base pointer to rbp and adds 8 to the stack pointer. The last instruction,
retq, jumps back to the procedure that called this one and adds 8 to the
stack pointer, which returns the stack pointer to where it was prior to the
procedure call.

The compiler will need a convenient representation for manipulating x86
programs, so we define an abstract syntax for x86 in Figure 2.7. We re-
fer to this language as x860 with a subscript 0 because later we introduce
extended versions of this assembly language. The main difference com-
pared to the concrete syntax of x86 (Figure 2.3) is that it does nto allow
labelled instructions to appear anywhere, but instead organizes instructions
into groups called blocks and a label is associated with every block, which is
why the program form includes an association list mapping labels to blocks.
The reason for this organization becomes apparent in Chapter 4.

24 2. INTEGERS AND VARIABLES

register ::= rsp | rbp | rax | rbx | rcx | rdx | rsi | rdi |
r8 | r9 | r10 | r11 | r12 | r13 | r14 | r15

arg ::= (int int) | (reg register) | (deref register int)
instr ::= (addq arg arg) | (subq arg arg) | (movq arg arg) | (retq)

| (negq arg) | (callq label) | (pushq arg) | (popq arg)
block ::= (block info instr+)
x860 ::= (program info ((label . block)+))

Figure 2.7: Abstract syntax for x860 assembly.

2.3 Planning the trip to x86 via the C0 language
To compile one language to another it helps to focus on the differences
between the two languages because the compiler will need to bridge them.
What are the differences between R1 and x86 assembly? Here we list some
of the most important ones.

(a) x86 arithmetic instructions typically have two arguments and update
the second argument in place. In contrast, R1 arithmetic operations
take two arguments and produce a new value. An x86 instruction may
have at most one memory-accessing argument. Furthermore, some
instructions place special restrictions on their arguments.

(b) An argument to an R1 operator can be any expression, whereas x86
instructions restrict their arguments to be simple expressions like inte-
gers, registers, and memory locations. (All the other kinds are called
complex expressions.)

(c) The order of execution in x86 is explicit in the syntax: a sequence
of instructions and jumps to labeled positions, whereas in R1 it is a
left-to-right depth-first traversal of the abstract syntax tree.

(d) An R1 program can have any number of variables whereas x86 has 16
registers and the procedure calls stack.

(e) Variables in R1 can overshadow other variables with the same name.
The registers and memory locations of x86 all have unique names or
addresses.

We ease the challenge of compiling from R1 to x86 by breaking down the
problem into several steps, dealing with the above differences one at a time.

2.3. PLANNING THE TRIP TO X86 VIA THE C0 LANGUAGE 25

Each of these steps is called a pass of the compiler, because step traverses
(passes over) the AST of the program. We begin by giving a sketch about
how we might implement each pass, and give them names. We shall then
figure out an ordering of the passes and the input/output language for each
pass. The very first pass has R1 as its input language and the last pass has
x86 as its output language. In between we can choose whichever language
is most convenient for expressing the output of each pass, whether that
be R1, x86, or new intermediate languages of our own design. Finally, to
implement the compiler, we shall write one function, typically a structural
recursive function, per pass.

Pass select-instructions To handle the difference between R1 opera-
tions and x86 instructions we shall convert each R1 operation to a
short sequence of instructions that accomplishes the same task.

Pass remove-complex-opera* To ensure that each subexpression (i.e. op-
erator and operand, and hence opera*) is a simple expression, we shall
introduce temporary variables to hold the results of subexpressions.

Pass explicate-control To make the execution order of the program ex-
plicit, we shall convert from the abstract syntax tree representation
into a graph representation in which each node contains a sequence of
actions and the edges say where to go after the sequence is complete.

Pass assign-homes To handle the difference between the variables in R1
versus the registers and stack location in x86, we shall come up with
an assignment of each variable to its home, that is, to a register or
stack location.

Pass uniquify This pass deals with the shadowing of variables by renaming
every variable to a unique name, so that shadowing no longer occurs.

The next question is: in what order should we apply these passes? This
question can be a challenging one to answer because it is difficult to know
ahead of time which orders will be better (easier to implement, produce more
efficient code, etc.) so often some trial-and-error is involved. Nevertheless,
we can try to plan ahead and make educated choices regarding the orderings.

Let us consider the ordering of uniquify and remove-complex-opera*.
The assignment of subexpressions to temporary variables involves introduc-
ing new variables and moving subexpressions, which might change the shad-
owing of variables and inadvertently change the behavior of the program.
But if we apply uniquify first, this will not be an issue. Of course, this

26 2. INTEGERS AND VARIABLES

means that in remove-complex-opera*, we need to ensure that the tempo-
rary variables that it creates are unique.

Next we shall consider the ordering of the explicate-control pass and
select-instructions. It is clear that explicate-control must come first
because the control-flow graph that it generates is needed when determin-
ing where to place the x86 label and jump instructions. Regarding the
ordering of explicate-control with respect to uniquify, it is important
to apply uniquify first because in explicate-control we change all the
let-bound variables to become local variables whose scope is the entire pro-
gram. With respect to remove-complex-opera*, it perhaps does not matter
very much, but it works well to place explicate-control after removing
complex subexpressions.

The assign-homes pass should come after remove-complex-opera* and
explicate-control. The remove-complex-opera* pass generates tempo-
rary variables, which also need to be assigned homes. The explicate-control
pass deletes branches that will never be executed, which can remove vari-
ables. Thus it is good to place explicate-control prior to assign-homes
so that there are fewer variables that need to be assigned homes. This is
important because the assign-homes pass has the highest time complexity.

Last, we need to decide on the ordering of select-instructions and
assign-homes. These two issues are intertwined, creating a bit of a Gordian
Knot. To do a good job of assigning homes, it is helpful to have already
determined which instructions will be used, because x86 instructions have
restrictions about which of their arguments can be registers versus stack lo-
cations. For example, one can give preferential treatment to variables that
occur in register-argument positions. On the other hand, it may turn out to
be impossible to make sure that all such variables are assigned to registers,
and then one must redo the selection of instructions. Some compilers handle
this problem by iteratively repeating these two passes until a good solution
is found. We shall use a simpler approach in which select-instructions
comes first, followed by the assign-homes, followed by a third pass, named
patch-instructions, that uses a reserved register (rax) to patch-up out-
standing problems regarding instructions with too many memory accesses.

Figure 2.8 presents the ordering of the compiler passes in the form of a
graph. Each pass is an edge and the input/output language of each pass is a
node in the graph. The output of uniquify and remove-complex-opera*
are programs that are still in the R1 language, but the output of the pass
explicate-control is in a different language that is designed to make the
order of evaluation explicit in its syntax, which we introduce in the next
section. Also, there are two passes of lesser importance in Figure 2.8 that

2.3. PLANNING THE TRIP TO X86 VIA THE C0 LANGUAGE 27

R1 R1 R1

C0C0

x86∗0 x86∗0 x860 x86†0

uniquify remove-complex.

explicate-control

uncover-locals

select-instr.
assign-homes patch-instr. print-x86

Figure 2.8: Overview of the passes for compiling R1.

we have not yet talked about, uncover-locals and print-x86. We shall
discuss them later in this Chapter.

2.3.1 The C0 Intermediate Language

It so happens that the output of explicate-control is vaguely similar to
the C language [Kernighan and Ritchie, 1988], so we name it C0. The syntax
for C0 is defined in Figure 2.9. The C0 language supports the same operators
as R1 but the arguments of operators are now restricted to just variables and
integers, thanks to the remove-complex-opera* pass. In the literature this
style of intermediate language is called administrative normal form, or ANF
for short [Danvy, 1991, Flanagan et al., 1993]. Instead of let expressions, C0
has assignment statements which can be executed in sequence using the seq
construct. A sequence of statements always ends with return, a guarantee
that is baked into the grammar rules for the tail non-terminal. The naming
of this non-terminal comes from the term tail position, which refers to an
expression that is the last one to execute within a function. (A expression
in tail position may contain subexpressions, and those may or may not be
in tail position depending on the kind of expression.)

A C0 program consists of an association list mapping labels to tails. This
is overkill for the present Chapter, as we do not yet need to introduce goto
for jumping to labels, but it saves us from having to change the syntax of
the program construct in Chapter 4. For now there will be just one label,
start, and the whole program will be it’s tail. The info field of the program
construt, after the uncover-locals pass, will contain a mapping from the
symbol locals to a list of variables, that is, a list of all the variables used in

28 2. INTEGERS AND VARIABLES

arg ::= int | var
exp ::= arg | (read) | (- arg) | (+ arg arg)
stmt ::= (assign var exp)
tail ::= (return exp) | (seq stmt tail)
C0 ::= (program info ((label . tail)+))

Figure 2.9: The C0 intermediate language.

the program. At the start of the program, these variables are uninitialized
(they contain garbage) and each variable becomes initialized on its first
assignment.

2.3.2 The dialects of x86

The x86∗0 language, pronounced “pseudo-x86”, is the output of the pass
select-instructions. It extends x860 with variables and looser rules re-
garding instruction arguments. The x86† language, the output of print-x86,
is the concrete syntax for x86.

2.4 Uniquify Variables

The purpose of this pass is to make sure that each let uses a unique variable
name. For example, the uniquify pass should translate the program on the
left into the program on the right.

(program ()
(let ([x 32])
(+ (let ([x 10]) x) x)))

⇒
(program ()
(let ([x.1 32])
(+ (let ([x.2 10]) x.2) x.1)))

The following is another example translation, this time of a program with a
let nested inside the initializing expression of another let.
(program ()
(let ([x (let ([x 4])

(+ x 1))])
(+ x 2)))

⇒
(program ()
(let ([x.2 (let ([x.1 4])

(+ x.1 1))])
(+ x.2 2)))

We recommend implementing uniquify as a structurally recursive func-
tion that mostly copies the input program. However, when encountering a
let, it should generate a unique name for the variable (the Racket function
gensym is handy for this) and associate the old name with the new unique
name in an association list. The uniquify function will need to access this

2.4. UNIQUIFY VARIABLES 29

(define (uniquify-exp alist)
(lambda (e)
(match e
[(? symbol?) ___]
[(? integer?) e]
[‘(let ([,x ,e]) ,body) ___]
[‘(,op ,es ...)
‘(,op ,@(for/list ([e es]) ((uniquify-exp alist) e)))]
)))

(define (uniquify alist)
(lambda (e)
(match e
[‘(program ,info ,e)
‘(program ,info ,((uniquify-exp alist) e))]
)))

Figure 2.10: Skeleton for the uniquify pass.

association list when it gets to a variable reference, so we add another param-
eter to uniquify for the association list. It is quite common for a compiler
pass to need a map to store extra information about variables. Such maps
are often called symbol tables.

The skeleton of the uniquify function is shown in Figure 2.10. The
function is curried so that it is convenient to partially apply it to an asso-
ciation list and then apply it to different expressions, as in the last clause
for primitive operations in Figure 2.10. In the last match clause for the
primitive operators, note the use of the comma-@ operator to splice a list
of S-expressions into an enclosing S-expression.

Exercise 2. Complete the uniquify pass by filling in the blanks, that is,
implement the clauses for variables and for the let construct.

Exercise 3. Test your uniquify pass by creating five example R1 programs
and checking whether the output programs produce the same result as the
input programs. The R1 programs should be designed to test the most
interesting parts of the uniquify pass, that is, the programs should include
let constructs, variables, and variables that overshadow each other. The five
programs should be in a subdirectory named tests and they should have the
same file name except for a different integer at the end of the name, followed

30 2. INTEGERS AND VARIABLES

by the ending .rkt. Use the interp-tests function (Appendix 12.2) from
utilities.rkt to test your uniquify pass on the example programs.

2.5 Remove Complex Operators and Operands

The remove-complex-opera* pass will transform R1 programs so that the
arguments of operations are simple expressions. Put another way, this pass
removes complex subexpressions, such as the expression (- 10) in the pro-
gram below. This is accomplished by introducing a new let-bound variable,
binding the complex subexpression to the new variable, and then using the
new variable in place of the complex expression, as shown in the output of
remove-complex-opera* on the right.

(program ()
(+ 52 (- 10))) ⇒

(program ()
(let ([tmp.1 (- 10)])
(+ 52 tmp.1)))

We recommend implementing this pass with two mutually recursive func-
tions, rco-arg and rco-exp. The idea is to apply rco-arg to subexpressions
that need to become simple and to apply rco-exp to subexpressions can stay
complex. Both functions take an expression in R1 as input. The rco-exp
function returns an expression. The rco-arg function returns two things: a
simple expression and association list mapping temporary variables to com-
plex subexpressions. You can return multiple things from a function using
Racket’s values form and you can receive multiple things from a function
call using the define-values form. If you are not familiar with these con-
structs, the Racket documentation will be of help. Also, the for/lists
construct is useful for applying a function to each element of a list, in the
case where the function returns multiple values.

(rco-arg ‘(- 10)) ⇒ (values ‘tmp.1
‘((tmp.1 . (- 10))))

Take special care of programs such as the following that let-bind vari-
ables with integers or other variables. It should leave them unchanged, as
shown in to the program on the right
(program ()
(let ([a 42])
(let ([b a])
b)))

⇒
(program ()
(let ([a 42])
(let ([b a])
b)))

and not translate them to the following, which might result from a careless
implementation of rco-exp and rco-arg.

2.6. EXPLICATE CONTROL 31

(program ()
(let ([tmp.1 42])
(let ([a tmp.1])
(let ([tmp.2 a])
(let ([b tmp.2])
b)))))

Exercise 4. Implement the remove-complex-opera* pass and test it on
all of the example programs that you created to test the uniquify pass and
create three new example programs that are designed to exercise all of the in-
teresting code in the remove-complex-opera* pass. Use the interp-tests
function (Appendix 12.2) from utilities.rkt to test your passes on the
example programs.

2.6 Explicate Control

The explicate-control pass makes the order of execution explicit in the
syntax of the program. For R1, this amounts to flattening let constructs
into a sequence of assignment statements. For example, consider the follow-
ing R1 program.
(program ()
(let ([y (let ([x 20])

(+ x (let ([x 22]) x)))])
y))

The output of remove-complex-opera* is shown below, on the left. The
right-hand-side of a let executes before its body, so the order of evaluation
for this program is to assign 20 to x.1, assign 22 to x.2, assign (+ x.1 x.2)
to y, then return y. Indeed, the result of explicate-control produces code
in the C0 language that makes this explicit.

(program ()
(let ([y (let ([x.1 20])

(let ([x.2 22])
(+ x.1 x.2)))])

y))

⇒

(program ()
((start .
(seq (assign x.1 20)
(seq (assign x.2 22)
(seq (assign y (+ x.1 x.2))
(return y)))))))

We recommend implementing explicate-control using two mutually
recursive functions: explicate-control-tail and explicate-control-assign.
The explicate-control-tail function should be applied to expressions
in tail position, whereas explicate-control-assign should be applied

32 2. INTEGERS AND VARIABLES

to expressions that occur on the right-hand-side of a let. The function
explicate-control-tail takes an R1 expression as input and produces a
C0 tail (see the grammar in Figure 2.9). The explicate-control-assign
function takes an R1 expression, the variable that it is to be assigned to,
and C0 code (a tail) that should come after the assignment (e.g., the code
generated for the body of the let).

2.7 Uncover Locals
The pass uncover-locals simply collects all of the variables in the program
and places then in the info of the program construct. Here is the output for
the example program of the last section.

(program ((locals . (x.1 x.2 y)))
((start .
(seq (assign x.1 20)
(seq (assign x.2 22)
(seq (assign y (+ x.1 x.2))
(return y)))))))

2.8 Select Instructions
In the select-instructions pass we begin the work of translating from
C0 to x86. The target language of this pass is a pseudo-x86 language that
still uses variables, so we add an AST node of the form (var var) to the x86
abstract syntax. We recommend implementing the select-instructions
in terms of three auxilliary functions, one for each of the non-terminals of
C0: arg, stmt, and tail.

The cases for arg are straightforward, simply putting variables and in-
teger literals into the s-expression format expected of pseudo-x86, (var x)
and (int n), respectively.

Next we discuss some of the cases for stmt, starting with arithmetic op-
erations. For example, in C0 an addition operation can take the form below.
To translate to x86, we need to use the addq instruction which does an in-
place update. So we must first move 10 to x.

(assign x (+ 10 32)) ⇒ (movq (int 10) (var x))
(addq (int 32) (var x))

There are some cases that require special care to avoid generating needlessly
complicated code. If one of the arguments is the same as the left-hand side
of the assignment, then there is no need for the extra move instruction. For

2.9. ASSIGN HOMES 33

example, the following assignment statement can be translated into a single
addq instruction.

(assign x (+ 10 x)) ⇒ (addq (int 10) (var x))

The read operation does not have a direct counterpart in x86 assembly,
so we have instead implemented this functionality in the C language, with
the function read_int in the file runtime.c. In general, we refer to all of
the functionality in this file as the runtime system, or simply the runtime
for short. When compiling your generated x86 assembly code, you will need
to compile runtime.c to runtime.o (an “object file”, using gcc option -c)
and link it into the final executable. For our purposes of code generation,
all you need to do is translate an assignment of read to some variable lhs
(for left-hand side) into a call to the read_int function followed by a move
from rax to the left-hand side. The move from rax is needed because the
return value from read_int goes into rax, as is the case in general.

(assign lhs (read)) ⇒ (callq read_int)
(movq (reg rax) (var lhs))

There are two cases for the tail non-terminal: return and seq. Re-
garding (return e), we recommend treating it as an assignment to the rax
register followed by a jump to the conclusion of the program (so the conclu-
sion needs to be labeled). For (seq s t), we simply process the statement s
and tail t recursively and append the resulting instructions.

Exercise 5. Implement the select-instructions pass and test it on all
of the example programs that you created for the previous passes and create
three new example programs that are designed to exercise all of the inter-
esting code in this pass. Use the interp-tests function (Appendix 12.2)
from utilities.rkt to test your passes on the example programs.

2.9 Assign Homes
As discussed in Section 2.3, the assign-homes pass places all of the variables
on the stack. Consider again the example R1 program (+ 52 (- 10)),
which after select-instructions looks like the following.

(movq (int 10) (var tmp.1))
(negq (var tmp.1))
(movq (var tmp.1) (var tmp.2))
(addq (int 52) (var tmp.2))
(movq (var tmp.2) (reg rax)))

34 2. INTEGERS AND VARIABLES

The variable tmp.1 is assigned to stack location -8(%rbp), and tmp.2 is
assign to -16(%rbp), so the assign-homes pass translates the above to

(movq (int 10) (deref rbp -8))
(negq (deref rbp -8))
(movq (deref rbp -8) (deref rbp -16))
(addq (int 52) (deref rbp -16))
(movq (deref rbp -16) (reg rax)))

In the process of assigning stack locations to variables, it is convenient
to compute and store the size of the frame (in bytes) in the info field of
the program node, with the key stack-space, which will be needed later to
generate the procedure conclusion. Some operating systems place restric-
tions on the frame size. For example, Mac OS X requires the frame size to
be a multiple of 16 bytes.

Exercise 6. Implement the assign-homes pass and test it on all of the
example programs that you created for the previous passes pass. We rec-
ommend that assign-homes take an extra parameter that is a mapping of
variable names to homes (stack locations for now). Use the interp-tests
function (Appendix 12.2) from utilities.rkt to test your passes on the
example programs.

2.10 Patch Instructions
The purpose of this pass is to make sure that each instruction adheres to
the restrictions regarding which arguments can be memory references. For
most instructions, the rule is that at most one argument may be a memory
reference.

Consider again the following example.
(let ([a 42])
(let ([b a])
b))

After assign-homes pass, the above has been translated to
(movq (int 42) (deref rbp -8))
(movq (deref rbp -8) (deref rbp -16))
(movq (deref rbp -16) (reg rax))
(jmp conclusion)

The second movq instruction is problematic because both arguments are
stack locations. We suggest fixing this problem by moving from the source
to the register rax and then from rax to the destination, as follows.

2.11. PRINT X86 35

(movq (int 42) (deref rbp -8))
(movq (deref rbp -8) (reg rax))
(movq (reg rax) (deref rbp -16))
(movq (deref rbp -16) (reg rax))

Exercise 7. Implement the patch-instructions pass and test it on all of
the example programs that you created for the previous passes and create
three new example programs that are designed to exercise all of the inter-
esting code in this pass. Use the interp-tests function (Appendix 12.2)
from utilities.rkt to test your passes on the example programs.

2.11 Print x86
The last step of the compiler from R1 to x86 is to convert the x86 AST
(defined in Figure 2.7) to the string representation (defined in Figure 2.3).
The Racket format and string-append functions are useful in this regard.
The main work that this step needs to perform is to create the main function
and the standard instructions for its prelude and conclusion, as shown in
Figure 2.5 of Section 2.2. You need to know the number of stack-allocated
variables, so we suggest computing it in the assign-homes pass (Section 2.9)
and storing it in the info field of the program node.

If you want your program to run on Mac OS X, your code needs to
determine whether or not it is running on a Mac, and prefix underscores
to labels like main. You can determine the platform with the Racket call
(system-type ’os), which returns ’macosx, ’unix, or ’windows.

Exercise 8. Implement the print-x86 pass and test it on all of the example
programs that you created for the previous passes. Use the compiler-tests
function (Appendix 12.2) from utilities.rkt to test your complete com-
piler on the example programs.

36 2. INTEGERS AND VARIABLES

3

Register Allocation

In Chapter 2 we simplified the generation of x86 assembly by placing all
variables on the stack. We can improve the performance of the generated
code considerably if we instead place as many variables as possible into
registers. The CPU can access a register in a single cycle, whereas accessing
the stack takes many cycles to go to cache or many more to access main
memory. Figure 3.1 shows a program with four variables that serves as
a running example. We show the source program and also the output of
instruction selection. At that point the program is almost x86 assembly but
not quite; it still contains variables instead of stack locations or registers.

The goal of register allocation is to fit as many variables into registers as
possible. It is often the case that we have more variables than registers, so we
cannot map each variable to a different register. Fortunately, it is common
for different variables to be needed during different periods of time, and in
such cases several variables can be mapped to the same register. Consider
variables x and y in Figure 3.1. After the variable x is moved to z it is no
longer needed. Variable y, on the other hand, is used only after this point,
so x and y could share the same register. The topic of Section 3.2 is how
we compute where a variable is needed. Once we have that information,
we compute which variables are needed at the same time, i.e., which ones
interfere, and represent this relation as graph whose vertices are variables
and edges indicate when two variables interfere with eachother (Section 3.3).
We then model register allocation as a graph coloring problem, which we
discuss in Section 3.4.

In the event that we run out of registers despite these efforts, we place
the remaining variables on the stack, similar to what we did in Chapter 2. It
is common to say that when a variable that is assigned to a stack location,

37

38 3. REGISTER ALLOCATION

R1 program:
(program ()
(let ([v 1])
(let ([w 46])
(let ([x (+ v 7)])
(let ([y (+ 4 x)])
(let ([z (+ x w)])

(+ z (- y))))))))

After instruction selection:
(program
((locals . (v w x y z t.1)))
((start .
(block ()
(movq (int 1) (var v))
(movq (int 46) (var w))
(movq (var v) (var x))
(addq (int 7) (var x))
(movq (var x) (var y))
(addq (int 4) (var y))
(movq (var x) (var z))
(addq (var w) (var z))
(movq (var y) (var t.1))
(negq (var t.1))
(movq (var z) (reg rax))
(addq (var t.1) (reg rax))
(jmp conclusion)))))

Figure 3.1: An example program for register allocation.

it has been spilled. The process of spilling variables is handled as part of
the graph coloring process described in 3.4.

3.1 Registers and Calling Conventions

As we perform register allocation, we will need to be aware of the conven-
tions that govern the way in which registers interact with function calls.
The convention for x86 is that the caller is responsible for freeing up some
registers, the caller-saved registers, prior to the function call, and the callee
is responsible for saving and restoring some other registers, the callee-saved
registers, before and after using them. The caller-saved registers are
rax rdx rcx rsi rdi r8 r9 r10 r11

while the callee-saved registers are
rsp rbp rbx r12 r13 r14 r15

Another way to think about this caller/callee convention is the following.
The caller should assume that all the caller-saved registers get overwritten
with arbitrary values by the callee. On the other hand, the caller can safely
assume that all the callee-saved registers contain the same values after the

3.2. LIVENESS ANALYSIS 39

call that they did before the call. The callee can freely use any of the caller-
saved registers. However, if the callee wants to use a callee-saved register,
the callee must arrange to put the original value back in the register prior to
returning to the caller, which is usually accomplished by saving and restoring
the value from the stack.

3.2 Liveness Analysis
A variable is live if the variable is used at some later point in the program
and there is not an intervening assignment to the variable. To understand
the latter condition, consider the following code fragment in which there are
two writes to b. Are a and b both live at the same time?

1 (movq (int 5) (var a))
2 (movq (int 30) (var b))
3 (movq (var a) (var c))
4 (movq (int 10) (var b))
5 (addq (var b) (var c))

The answer is no because the value 30 written to b on line 2 is never used.
The variable b is read on line 5 and there is an intervening write to b on
line 4, so the read on line 5 receives the value written on line 4, not line 2.

The live variables can be computed by traversing the instruction se-
quence back to front (i.e., backwards in execution order). Let I1, . . . , In be
the instruction sequence. We write Lafter(k) for the set of live variables after
instruction Ik and Lbefore(k) for the set of live variables before instruction
Ik. The live variables after an instruction are always the same as the live
variables before the next instruction.

Lafter(k) = Lbefore(k + 1)

To start things off, there are no live variables after the last instruction, so

Lafter(n) = ∅

We then apply the following rule repeatedly, traversing the instruction se-
quence back to front.

Lbefore(k) = (Lafter(k)−W (k)) ∪R(k),

where W (k) are the variables written to by instruction Ik and R(k) are
the variables read by instruction Ik. Figure 3.2 shows the results of live
variables analysis for the running example, with each instruction aligned
with its Lafter set to make the figure easy to read.

40 3. REGISTER ALLOCATION

1 (block ()
2 (movq (int 1) (var v))
3 (movq (int 46) (var w))
4 (movq (var v) (var x))
5 (addq (int 7) (var x))
6 (movq (var x) (var y))
7 (addq (int 4) (var y))
8 (movq (var x) (var z))
9 (addq (var w) (var z))

10 (movq (var y) (var t.1))
11 (negq (var t.1))
12 (movq (var z) (reg rax))
13 (addq (var t.1) (reg rax))
14 (jmp conclusion))

{}
{v}
{v, w}
{w, x}
{w, x}
{w, x, y}
{w, x, y}
{w, y, z}
{y, z}
{z, t.1}
{z, t.1}
{t.1}
{}
{}

Figure 3.2: An example block annotated with live-after sets.

Exercise 9. Implement the compiler pass named uncover-live that com-
putes the live-after sets. We recommend storing the live-after sets (a list of
lists of variables) in the info field of the block construct. We recommend
organizing your code to use a helper function that takes a list of instruc-
tions and an initial live-after set (typically empty) and returns the list of
live-after sets. We recommend creating helper functions to 1) compute the
set of variables that appear in an argument (of an instruction), 2) compute
the variables read by an instruction which corresponds to the R function
discussed above, and 3) the variables written by an instruction which corre-
sponds to W .

3.3 Building the Interference Graph

Based on the liveness analysis, we know where each variable is needed. How-
ever, during register allocation, we need to answer questions of the specific
form: are variables u and v live at the same time? (And therefore cannot
be assigned to the same register.) To make this question easier to answer,
we create an explicit data structure, an interference graph. An interference
graph is an undirected graph that has an edge between two variables if they
are live at the same time, that is, if they interfere with each other.

The most obvious way to compute the interference graph is to look at
the set of live variables between each statement in the program, and add an
edge to the graph for every pair of variables in the same set. This approach

3.3. BUILDING THE INTERFERENCE GRAPH 41

is less than ideal for two reasons. First, it can be rather expensive because
it takes O(n2) time to look at every pair in a set of n live variables. Second,
there is a special case in which two variables that are live at the same time
do not actually interfere with each other: when they both contain the same
value because we have assigned one to the other.

A better way to compute the interference graph is to focus on the writes.
That is, for each instruction, create an edge between the variable being
written to and all the other live variables. (One should not create self
edges.) For a callq instruction, think of all caller-saved registers as being
written to, so and edge must be added between every live variable and every
caller-saved register. For movq, we deal with the above-mentioned special
case by not adding an edge between a live variable v and destination d if v
matches the source of the move. So we have the following three rules.

1. If instruction Ik is an arithmetic instruction such as (addq s d), then
add the edge (d, v) for every v ∈ Lafter(k) unless v = d.

2. If instruction Ik is of the form (callq label), then add an edge (r, v)
for every caller-saved register r and every variable v ∈ Lafter(k).

3. If instruction Ik is a move: (movq s d), then add the edge (d, v) for
every v ∈ Lafter(k) unless v = d or v = s.

Working from the top to bottom of Figure 3.2, we obtain the following
interference for the instruction at the specified line number.

Line 2: no interference,
Line 3: w interferes with v,
Line 4: x interferes with w,
Line 5: x interferes with w,
Line 6: y interferes with w,
Line 7: y interferes with w and x,
Line 8: z interferes with w and y,
Line 9: z interferes with y,
Line 10: t.1 interferes with z,
Line 11: t.1 interferes with z,
Line 12: no interference,
Line 13: no interference.
Line 14: no interference.

The resulting interference graph is shown in Figure 3.3.

42 3. REGISTER ALLOCATION

v w x

t.1y z

Figure 3.3: The interference graph of the example program.

Exercise 10. Implement the compiler pass named build-interference ac-
cording to the algorithm suggested above. We recommend using the Racket
graph package to create and inspect the interference graph. The output
graph of this pass should be stored in the info field of the program, under
the key conflicts.

3.4 Graph Coloring via Sudoku

We now come to the main event, mapping variables to registers (or to stack
locations in the event that we run out of registers). We need to make sure
not to map two variables to the same register if the two variables interfere
with each other. In terms of the interference graph, this means that adjacent
vertices must be mapped to different registers. If we think of registers as
colors, the register allocation problem becomes the widely-studied graph
coloring problem [Balakrishnan, 1996, Rosen, 2002].

The reader may be more familiar with the graph coloring problem than
he or she realizes; the popular game of Sudoku is an instance of the graph
coloring problem. The following describes how to build a graph out of an
initial Sudoku board.

• There is one vertex in the graph for each Sudoku square.

• There is an edge between two vertices if the corresponding squares are
in the same row, in the same column, or if the squares are in the same
3× 3 region.

• Choose nine colors to correspond to the numbers 1 to 9.

• Based on the initial assignment of numbers to squares in the Sudoku
board, assign the corresponding colors to the corresponding vertices
in the graph.

3.4. GRAPH COLORING VIA SUDOKU 43

1

1

1

2 3

2

2

3

3

3

2

Figure 3.4: A Sudoku game board and the corresponding colored graph.

If you can color the remaining vertices in the graph with the nine colors, then
you have also solved the corresponding game of Sudoku. Figure 3.4 shows
an initial Sudoku game board and the corresponding graph with colored
vertices. We map the Sudoku number 1 to blue, 2 to yellow, and 3 to
red. We only show edges for a sampling of the vertices (those that are
colored) because showing edges for all of the vertices would make the graph
unreadable.

Given that Sudoku is an instance of graph coloring, one can use Sudoku
strategies to come up with an algorithm for allocating registers. For ex-
ample, one of the basic techniques for Sudoku is called Pencil Marks. The
idea is that you use a process of elimination to determine what numbers
no longer make sense for a square, and write down those numbers in the
square (writing very small). For example, if the number 1 is assigned to a
square, then by process of elimination, you can write the pencil mark 1 in
all the squares in the same row, column, and region. Many Sudoku com-
puter games provide automatic support for Pencil Marks. The Pencil Marks
technique corresponds to the notion of color saturation due to Brélaz [1979].
The saturation of a vertex, in Sudoku terms, is the set of colors that are no
longer available. In graph terminology, we have the following definition:

saturation(u) = {c | ∃v.v ∈ neighbors(u) and color(v) = c}

where neighbors(u) is the set of vertices that share an edge with u.
Using the Pencil Marks technique leads to a simple strategy for filling

in numbers: if there is a square with only one possible number left, then

44 3. REGISTER ALLOCATION

Algorithm: DSATUR
Input: a graph G
Output: an assignment color[v] for each vertex v ∈ G

W ← vertices(G)
while W 6= ∅ do

pick a vertex u from W with the highest saturation,
breaking ties randomly

find the lowest color c that is not in {color[v] : v ∈ adjacent(u)}
color[u]← c
W ←W − {u}

Figure 3.5: The saturation-based greedy graph coloring algorithm.

write down that number! But what if there are no squares with only one
possibility left? One brute-force approach is to just make a guess. If that
guess ultimately leads to a solution, great. If not, backtrack to the guess and
make a different guess. One good thing about Pencil Marks is that it reduces
the degree of branching in the search tree. Nevertheless, backtracking can
be horribly time consuming. One way to reduce the amount of backtrack-
ing is to use the most-constrained-first heuristic. That is, when making a
guess, always choose a square with the fewest possibilities left (the vertex
with the highest saturation). The idea is that choosing highly constrained
squares earlier rather than later is better because later there may not be
any possibilities.

In some sense, register allocation is easier than Sudoku because we can
always cheat and add more numbers by mapping variables to the stack. We
say that a variable is spilled when we decide to map it to a stack location. We
would like to minimize the time needed to color the graph, and backtracking
is expensive. Thus, it makes sense to keep the most-constrained-first heuris-
tic but drop the backtracking in favor of greedy search (guess and just keep
going). Figure 3.5 gives the pseudo-code for this simple greedy algorithm
for register allocation based on saturation and the most-constrained-first
heuristic, which is roughly equivalent to the DSATUR algorithm of Brélaz
[1979] (also known as saturation degree ordering [Gebremedhin, 1999, Al-
Omari and Sabri, 2006]). Just as in Sudoku, the algorithm represents colors
with integers, with the first k colors corresponding to the k registers in a
given machine and the rest of the integers corresponding to stack locations.

With this algorithm in hand, let us return to the running example and

3.4. GRAPH COLORING VIA SUDOKU 45

consider how to color the interference graph in Figure 3.3. We shall not use
register rax for register allocation because we use it to patch instructions,
so we remove that vertex from the graph. Initially, all of the vertices are
not yet colored and they are unsaturated, so we annotate each of them with
a dash for their color and an empty set for the saturation.

v : −, {} w : −, {} x : −, {}

y : −, {} z : −, {} t.1 : −, {}

We select a maximally saturated vertex and color it 0. In this case we have
a 7-way tie, so we arbitrarily pick t.1. The then mark color 0 as no longer
available for z because it interferes with t.1.

v : −, {} w : −, {} x : −, {}

y : −, {} z : −, {0} t.1 : 0, {}

Now we repeat the process, selecting another maximally saturated vertex,
which in this case is z. We color z with 1.

v : −, {} w : −, {1} x : −, {}

y : −, {1} z : 1, {0} t.1 : 0, {1}

The most saturated vertices are now w and y. We color y with the first
available color, which is 0.

v : −, {} w : −, {0, 1} x : −, {0, }

y : 0, {1} z : 1, {0} t.1 : 0, {1}

Vertex w is now the most highly saturated, so we color w with 2.

v : −, {2} w : 2, {0, 1} x : −, {0, 2}

y : 0, {1, 2} z : 1, {0, 2} t.1 : 0, {}

46 3. REGISTER ALLOCATION

Now x has the highest saturation, so we color it 1.

v : −, {2} w : 2, {0, 1} x : 1, {0, 2}

y : 0, {1, 2} z : 1, {0, 2} t.1 : 0, {}

In the last step of the algorithm, we color v with 0.

v : 0, {2} w : 2, {0, 1} x : 1, {0, 2}

y : 0, {1, 2} z : 1, {0, 2} t.1 : 0, {}

With the coloring complete, we can finalize the assignment of variables
to registers and stack locations. Recall that if we have k registers, we map
the first k colors to registers and the rest to stack locations. Suppose for the
moment that we have just one register to use for register allocation, rcx.
Then the following is the mapping of colors to registers and stack allocations.

{0 7→ %rcx, 1 7→ -8(%rbp), 2 7→ -16(%rbp), . . .}

Putting this mapping together with the above coloring of the variables, we
arrive at the assignment:

{v 7→ %rcx, w 7→ -16(%rbp), x 7→ -8(%rbp),

y 7→ %rcx, z 7→ -8(%rbp), t.1 7→ %rcx}

Applying this assignment to our running example, on the left, yields the
program on the right.
(block ()
(movq (int 1) (var v))
(movq (int 46) (var w))
(movq (var v) (var x))
(addq (int 7) (var x))
(movq (var x) (var y))
(addq (int 4) (var y))
(movq (var x) (var z))
(addq (var w) (var z))
(movq (var y) (var t.1))
(negq (var t.1))
(movq (var z) (reg rax))
(addq (var t.1) (reg rax))
(jmp conclusion))

⇒

(block ()
(movq (int 1) (reg rcx))
(movq (int 46) (deref rbp -16))
(movq (reg rcx) (deref rbp -8))
(addq (int 7) (deref rbp -8))
(movq (deref rbp -8) (reg rcx))
(addq (int 4) (reg rcx))
(movq (deref rbp -8) (deref rbp -8))
(addq (deref rbp -16) (deref rbp -8))
(movq (reg rcx) (reg rcx))
(negq (reg rcx))
(movq (deref rbp -8) (reg rax))
(addq (reg rcx) (reg rax))
(jmp conclusion))

3.4. GRAPH COLORING VIA SUDOKU 47

R1 R1 R1

C0C0

x86∗ x86∗ x86 x86†

x86∗ x86∗

uniquify remove-complex.

explicate-control

uncover-locals

select-instr.

uncover-live

build-inter.

allocate-reg.

patch-instr. print-x86

Figure 3.6: Diagram of the passes for R1 with register allocation.

The resulting program is almost an x86 program. The remaining step
is to apply the patch instructions pass. In this example, the trivial move of
-8(%rbp) to itself is deleted and the addition of -16(%rbp) to -8(%rbp) is
fixed by going through rax as follows.
(movq (deref rbp -16) (reg rax)
(addq (reg rax) (deref rbp -8))

An overview of all of the passes involved in register allocation is shown
in Figure 3.6.

Exercise 11. Implement the pass allocate-registers, which should come
after the build-interference pass. The three new passes, uncover-live,
build-interference, and allocate-registers replace the assign-homes
pass of Section 2.9.

We recommend that you create a helper function named color-graph
that takes an interference graph and a list of all the variables in the pro-
gram. This function should return a mapping of variables to their colors
(represented as natural numbers). By creating this helper function, you will
be able to reuse it in Chapter 6 when you add support for functions.

Once you have obtained the coloring from color-graph, you can as-
sign the variables to registers or stack locations and then reuse code from
the assign-homes pass from Section 2.9 to replace the variables with their

48 3. REGISTER ALLOCATION

assigned location.
Test your updated compiler by creating new example programs that

exercise all of the register allocation algorithm, such as forcing variables to
be spilled to the stack.

3.5 Print x86 and Conventions for Registers

Recall the print-x86 pass generates the prelude and conclusion instructions
for the main function. The prelude saved the values in rbp and rsp and the
conclusion returned those values to rbp and rsp. The reason for this is
that our main function must adhere to the x86 calling conventions that we
described in Section 3.1. In addition, the main function needs to restore
(in the conclusion) any callee-saved registers that get used during register
allocation. The simplest approach is to save and restore all of the callee-
saved registers. The more efficient approach is to keep track of which callee-
saved registers were used and only save and restore them. Either way, make
sure to take this use of stack space into account when you are calculating
the size of the frame. Also, don’t forget that the size of the frame needs to
be a multiple of 16 bytes.

3.6 Challenge: Move Biasing∗

This section describes an optional enhancement to register allocation for
those students who are looking for an extra challenge or who have a deeper
interest in register allocation.

We return to the running example, but we remove the supposition that
we only have one register to use. So we have the following mapping of color
numbers to registers.

{0 7→ %rbx, 1 7→ %rcx, 2 7→ %rdx, . . .}

Using the same assignment that was produced by register allocator described
in the last section, we get the following program.

3.6. CHALLENGE: MOVE BIASING∗ 49

(block ()
(movq (int 1) (var v))
(movq (int 46) (var w))
(movq (var v) (var x))
(addq (int 7) (var x))
(movq (var x) (var y))
(addq (int 4) (var y))
(movq (var x) (var z))
(addq (var w) (var z))
(movq (var y) (var t.1))
(negq (var t.1))
(movq (var z) (reg rax))
(addq (var t.1) (reg rax))
(jmp conclusion))

⇒

(block ()
(movq (int 1) (reg rbx))
(movq (int 46) (reg rdx))
(movq (reg rbx) (reg rcx))
(addq (int 7) (reg rcx))
(movq (reg rcx) (reg rbx))
(addq (int 4) (reg rbx))
(movq (reg rcx) (reg rcx))
(addq (reg rdx) (reg rcx))
(movq (reg rbx) (reg rbx))
(negq (reg rbx))
(movq (reg rcx) (reg rax))
(addq (reg rbx) (reg rax))
(jmp conclusion))

While this allocation is quite good, we could do better. For example,
the variables v and x ended up in different registers, but if they had been
placed in the same register, then the move from v to x could be removed.

We say that two variables p and q are move related if they participate
together in a movq instruction, that is, movq p, q or movq q, p. When the
register allocator chooses a color for a variable, it should prefer a color that
has already been used for a move-related variable (assuming that they do
not interfere). Of course, this preference should not override the preference
for registers over stack locations, but should only be used as a tie breaker
when choosing between registers or when choosing between stack locations.

We recommend that you represent the move relationships in a graph,
similar to how we represented interference. The following is the move graph
for our running example.

v w x

y z t.1

Now we replay the graph coloring, pausing to see the coloring of x and
v. So we have the following coloring and the most saturated vertex is x.

v : −, {2} w : 2, {0, 1} x : −, {0, 2}

y : 0, {1, 2} z : 1, {0, 2} t.1 : 0, {}

50 3. REGISTER ALLOCATION

Last time we chose to color x with 1, which so happens to be the color of
z, and x is move related to z. This was rather lucky, and if the program
had been a little different, and say z had been already assigned to 2, then x
would still get 1 and our luck would have run out. With move biasing, we
use the fact that x and z are move related to influence the choice of color
for x, in this case choosing 1 because that’s the color of z.

v : −, {2} w : 2, {0, 1} x : 1, {0, 2}

y : 0, {1, 2} z : 1, {0, 2} t.1 : 0, {}

Next we consider coloring the variable v, and we just need to avoid
choosing 2 because of the interference with w. Last time we choose the
color 0, simply because it was the lowest, but this time we know that v is
move related to x, so we choose the color 1.

v : 1, {2} w : 2, {0, 1} x : 1, {0, 2}

y : 0, {1, 2} z : 1, {0, 2} t.1 : 0, {}

We apply this register assignment to the running example, on the left,
to obtain the code on right.

(block ()
(movq (int 1) (var v))
(movq (int 46) (var w))
(movq (var v) (var x))
(addq (int 7) (var x))
(movq (var x) (var y))
(addq (int 4) (var y))
(movq (var x) (var z))
(addq (var w) (var z))
(movq (var y) (var t.1))
(negq (var t.1))
(movq (var z) (reg rax))
(addq (var t.1) (reg rax))
(jmp conclusion))

⇒

(block ()
(movq (int 1) (reg rcx))
(movq (int 46) (reg rbx))
(movq (reg rcx) (reg rcx))
(addq (int 7) (reg rcx))
(movq (reg rcx) (reg rdx))
(addq (int 4) (reg rdx))
(movq (reg rcx) (reg rcx))
(addq (reg rbx) (reg rcx))
(movq (reg rdx) (reg rbx))
(negq (reg rbx))
(movq (reg rcx) (reg rax))
(addq (reg rbx) (reg rax))
(jmp conclusion))

The patch-instructions then removes the trivial moves from v to x
and from x to z to obtain the following result.

3.6. CHALLENGE: MOVE BIASING∗ 51

(block ()
(movq (int 1) (reg rcx))
(movq (int 46) (reg rbx))
(addq (int 7) (reg rcx))
(movq (reg rcx) (reg rdx))
(addq (int 4) (reg rdx))
(addq (reg rbx) (reg rcx))
(movq (reg rdx) (reg rbx))
(negq (reg rbx))
(movq (reg rcx) (reg rax))
(addq (reg rbx) (reg rax))
(jmp conclusion))

Exercise 12. Change your implementation of allocate-registers to take
move biasing into account. Make sure that your compiler still passes all of
the previous tests. Create two new tests that include at least one opportu-
nity for move biasing and visually inspect the output x86 programs to make
sure that your move biasing is working properly.

52 3. REGISTER ALLOCATION

4

Booleans and Control Flow

The R0 and R1 languages only had a single kind of value, the integers. In
this Chapter we add a second kind of value, the Booleans, to create the
R2 language. The Boolean values true and false are written #t and #f
respectively in Racket. We also introduce several operations that involve
Booleans (and, not, eq?, <, etc.) and the conditional if expression. With
the addition of if expressions, programs can have non-trivial control flow
which has an impact on several parts of the compiler. Also, because we now
have two kinds of values, we need to worry about programs that apply an
operation to the wrong kind of value, such as (not 1).

There are two language design options for such situations. One option
is to signal an error and the other is to provide a wider interpretation of
the operation. The Racket language uses a mixture of these two options,
depending on the operation and the kind of value. For example, the result
of (not 1) in Racket is #f because Racket treats non-zero integers like #t.
On the other hand, (car 1) results in a run-time error in Racket stating
that car expects a pair.

The Typed Racket language makes similar design choices as Racket,
except much of the error detection happens at compile time instead of run
time. Like Racket, Typed Racket accepts and runs (not 1), producing #f.
But in the case of (car 1), Typed Racket reports a compile-time error
because Typed Racket expects the type of the argument to be of the form
(Listof T) or (Pairof T1 T2).

For the R2 language we choose to be more like Typed Racket in that
we shall perform type checking during compilation. In Chapter 8 we study
the alternative choice, that is, how to compile a dynamically typed language
like Racket. The R2 language is a subset of Typed Racket but by no means

53

54 4. BOOLEANS AND CONTROL FLOW

cmp ::= eq? | < | <= | > | >=
exp ::= int | (read) | (- exp) | (+ exp exp) | (- exp exp)

| var | (let ([var exp]) exp)
| #t | #f | (and exp exp) | (or exp exp) | (not exp)
| (cmp exp exp) | (if exp exp exp)

R2 ::= (program info exp)

Figure 4.1: The syntax of R2, extending R1 (Figure 2.1) with Booleans and
conditionals.

includes all of Typed Racket. Furthermore, for many of the operations
we shall take a narrower interpretation than Typed Racket, for example,
rejecting (not 1).

This chapter is organized as follows. We begin by defining the syntax
and interpreter for the R2 language (Section 4.1). We then introduce the
idea of type checking and build a type checker for R2 (Section 4.2). To
compile R2 we need to enlarge the intermediate language C0 into C1, which
we do in Section 4.5. The remaining sections of this Chapter discuss how our
compiler passes need to change to accommodate Booleans and conditional
control flow.

4.1 The R2 Language

The syntax of the R2 language is defined in Figure 4.1. It includes all of
R1 (shown in gray), the Boolean literals #t and #f, and the conditional if
expression. Also, we expand the operators to include subtraction, and, or
and not, the eq? operations for comparing two integers or two Booleans,
and the <, <=, >, and >= operations for comparing integers.

Figure 4.2 defines the interpreter for R2, omitting the parts that are
the same as the interpreter for R1 (Figure 2.2). The literals #t and #f
simply evaluate to themselves. The conditional expression (if cnd thn els)
evaluates the Boolean expression cnd and then either evaluates thn or els
depending on whether cnd produced #t or #f. The logical operations not
and and behave as you might expect, but note that the and operation is
short-circuiting. That is, given the expression (and e1 e2), the expression e2
is not evaluated if e1 evaluates to #f.

With the addition of the comparison operations, there are quite a few
primitive operations and the interpreter code for them is somewhat repet-
itive. In Figure 4.2 we factor out the different parts into the interp-op

4.2. TYPE CHECKING R2 PROGRAMS 55

function and the similar parts into the one match clause shown in Fig-
ure 4.2. We do not use interp-op for the and operation because of the
short-circuiting behavior in the order of evaluation of its arguments.

4.2 Type Checking R2 Programs
It is helpful to think about type checking in two complementary ways. A
type checker predicts the type of value that will be produced by each expres-
sion in the program. For R2, we have just two types, Integer and Boolean.
So a type checker should predict that

(+ 10 (- (+ 12 20)))

produces an Integer while
(and (not #f) #t)

produces a Boolean.
As mentioned at the beginning of this chapter, a type checker also rejects

programs that apply operators to the wrong type of value. Our type checker
for R2 will signal an error for the following expression because, as we have
seen above, the expression (+ 10 ...) has type Integer, and we require
the argument of a not to have type Boolean.

(not (+ 10 (- (+ 12 20))))

The type checker for R2 is best implemented as a structurally recur-
sive function over the AST. Figure 4.3 shows many of the clauses for the
type-check-exp function. Given an input expression e, the type checker ei-
ther returns the type (Integer or Boolean) or it signals an error. Of course,
the type of an integer literal is Integer and the type of a Boolean literal
is Boolean. To handle variables, the type checker, like the interpreter, uses
an association list. However, in this case the association list maps variables
to types instead of values. Consider the clause for let. We type check the
initializing expression to obtain its type T and then associate type T with
the variable x. When the type checker encounters the use of a variable, it
can find its type in the association list.

Exercise 13. Complete the implementation of type-check-R2 and test it
on 10 new example programs in R2 that you choose based on how thoroughly
they test the type checking algorithm. Half of the example programs should
have a type error, to make sure that your type checker properly rejects
them. The other half of the example programs should not have type errors.
Your testing should check that the result of the type checker agrees with

56 4. BOOLEANS AND CONTROL FLOW

(define primitives (set ’+ ’- ’eq? ’< ’<= ’> ’>= ’not ’read))

(define (interp-op op)
(match op
...
[’not (lambda (v) (match v [#t #f] [#f #t]))]
[’eq? (lambda (v1 v2)

(cond [(or (and (fixnum? v1) (fixnum? v2))
(and (boolean? v1) (boolean? v2)))

(eq? v1 v2)]))]
[’< (lambda (v1 v2)

(cond [(and (fixnum? v1) (fixnum? v2)) (< v1 v2)]))]
[’<= (lambda (v1 v2)

(cond [(and (fixnum? v1) (fixnum? v2)) (<= v1 v2)]))]
[’> (lambda (v1 v2)

(cond [(and (fixnum? v1) (fixnum? v2)) (> v1 v2)]))]
[’>= (lambda (v1 v2)

(cond [(and (fixnum? v1) (fixnum? v2)) (>= v1 v2)]))]
[else (error ’interp-op "unknown␣operator")]))

(define (interp-exp env)
(lambda (e)
(define recur (interp-exp env))
(match e
...
[(? boolean?) e]
[‘(if ,cnd ,thn ,els)
(define b (recur cnd))
(match b
[#t (recur thn)]
[#f (recur els)])]

[‘(and ,e1 ,e2)
(define v1 (recur e1))
(match v1
[#t (match (recur e2) [#t #t] [#f #f])]
[#f #f])]

[‘(,op ,args ...)
#:when (set-member? primitives op)
(apply (interp-op op) (for/list ([e args]) (recur e)))]
)))

(define (interp-R2 env)
(lambda (p)
(match p
[‘(program ,info ,e)
((interp-exp ’()) e)])))

Figure 4.2: Interpreter for the R2 language.

4.2. TYPE CHECKING R2 PROGRAMS 57

(define (type-check-exp env)
(lambda (e)
(define recur (type-check-exp env))
(match e
[(? fixnum?) ’Integer]
[(? boolean?) ’Boolean]
[(? symbol? x) (dict-ref env x)]
[‘(read) ’Integer]
[‘(let ([,x ,e]) ,body)
(define T (recur e))
(define new-env (cons (cons x T) env))
(type-check-exp new-env body)]
...
[‘(not ,e)
(match (recur e)
[’Boolean ’Boolean]
[else (error ’type-check-exp "’not’␣expects␣a␣Boolean" e)])]

...
)))

(define (type-check-R2 env)
(lambda (e)
(match e
[‘(program ,info ,body)
(define ty ((type-check-exp ’()) body))
‘(program ,info ,body)]
)))

Figure 4.3: Skeleton of a type checker for the R2 language.

58 4. BOOLEANS AND CONTROL FLOW

the value returned by the interpreter, that is, if the type checker returns
Integer, then the interpreter should return an integer. Likewise, if the
type checker returns Boolean, then the interpreter should return #t or #f.
Note that if your type checker does not signal an error for a program, then
interpreting that program should not encounter an error. If it does, there is
something wrong with your type checker.

4.3 Shrink the R2 Language
The R2 language includes several operators that are easily expressible in
terms of other operators. For example, subtraction is expressible in terms
of addition and negation.

(- e1 e2) ⇒ (+ e1 (- e2))

Several of the comparison operations are expressible in terms of less-than
and logical negation.

(<= e1 e2) ⇒ (not (< e2 e1))

By performing these translations near the front-end of the compiler, the later
passes of the compiler will not need to deal with these constructs, making
those passes shorter. On the other hand, sometimes these translations make
it more difficult to generate the most efficient code with respect to the
number of instructions. However, these differences typically do not affect the
number of accesses to memory, which is the primary factor that determines
execution time on modern computer architectures.

Exercise 14. Implement the pass shrink that removes subtraction, and,
or, <=, >, and >= from the language by translating them to other constructs
in R2. Create tests to make sure that the behavior of all of these constructs
stays the same after translation.

4.4 XOR, Comparisons, and Control Flow in x86
To implement the new logical operations, the comparison operations, and
the if expression, we need to delve further into the x86 language. Fig-
ure 4.4 defines the abstract syntax for a larger subset of x86 that includes
instructions for logical operations, comparisons, and jumps.

One small challenge is that x86 does not provide an instruction that
directly implements logical negation (not in R2 and C1). However, the

4.4. XOR, COMPARISONS, AND CONTROL FLOW IN X86 59

arg ::= (int int) | (reg register) | (deref register int)
| (byte-reg register)

cc ::= e | l | le | g | ge
instr ::= (addq arg arg) | (subq arg arg) | (negq arg) | (movq arg arg)

| (callq label) | (pushq arg) | (popq arg) | (retq)
| (xorq arg arg) | (cmpq arg arg) | (set cc arg)
| (movzbq arg arg) | (jmp label) | (jmp-if cc label)
| (label label)

x861 ::= (program info (type type) instr+)

Figure 4.4: The x861 language (extends x860 of Figure 2.7).

xorq instruction can be used to encode not. The xorq instruction takes
two arguments, performs a pairwise exclusive-or operation on each bit of its
arguments, and writes the results into its second argument. Recall the truth
table for exclusive-or:

0 1
0 0 1
1 1 0

For example, 0011 XOR 0101 = 0110. Notice that in row of the table for the
bit 1, the result is the opposite of the second bit. Thus, the not operation
can be implemented by xorq with 1 as the first argument: 0001 XOR 0000 =
0001 and 0001 XOR 0001 = 0000.

Next we consider the x86 instructions that are relevant for compiling the
comparison operations. The cmpq instruction compares its two arguments
to determine whether one argument is less than, equal, or greater than the
other argument. The cmpq instruction is unusual regarding the order of its
arguments and where the result is placed. The argument order is backwards:
if you want to test whether x < y, then write cmpq y, x. The result of cmpq
is placed in the special EFLAGS register. This register cannot be accessed
directly but it can be queried by a number of instructions, including the set
instruction. The set instruction puts a 1 or 0 into its destination depending
on whether the comparison came out according to the condition code cc (e
for equal, l for less, le for less-or-equal, g for greater, ge for greater-or-
equal). The set instruction has an annoying quirk in that its destination
argument must be single byte register, such as al, which is part of the rax
register. Thankfully, the movzbq instruction can then be used to move from
a single byte register to a normal 64-bit register.

60 4. BOOLEANS AND CONTROL FLOW

arg ::= int | var | #t | #f
cmp ::= eq? | <
exp ::= arg | (read) | (- arg) | (+ arg arg) | (not arg) | (cmp arg arg)
stmt ::= (assign var exp)
tail ::= (return exp) | (seq stmt tail)

| (goto label) | (if (cmp arg arg) (goto label) (goto label))
C1 ::= (program info ((label . tail)+))

Figure 4.5: The C1 language, extending C0 with Booleans and conditionals.

For compiling the if expression, the x86 instructions for jumping are
relevant. The jmp instruction updates the program counter to point to
the instruction after the indicated label. The jmp-if instruction updates
the program counter to point to the instruction after the indicated label
depending on whether the result in the EFLAGS register matches the con-
dition code cc, otherwise the jmp-if instruction falls through to the next
instruction. Because the jmp-if instruction relies on the EFLAGS register,
it is quite common for the jmp-if to be immediately preceeded by a cmpq
instruction, to set the EFLAGS regsiter. Our abstract syntax for jmp-if
differs from the concrete syntax for x86 to separate the instruction name
from the condition code. For example, (jmp-if le foo) corresponds to
jle foo.

4.5 The C1 Intermediate Language

As with R1, we shall compile R2 to a C-like intermediate language, but we
need to grow that intermediate language to handle the new features in R2:
Booleans and conditional expressions. Figure 4.5 shows the new features
of C1; we add logic and comparison operators to the exp non-terminal, the
literals #t and #f to the arg non-terminal. Regarding control flow, C1 dif-
fers considerably from R2. Instead of if expressions, C1 has goto’s and
conditional goto’s in the grammar for tail. This means that a sequence of
statements may now end with a goto or a conditional goto, which jumps
to one of two labeled pieces of code depending on the outcome of the com-
parison. In Section 4.6 we discuss how to translate from R2 to C1, bridging
this gap between if expressions and goto’s.

4.6. EXPLICATE CONTROL 61

4.6 Explicate Control
Recall that the purpose of explicate-control is to make the order of
evaluation explicit in the syntax of the program. With the addition of if
in R2, things get more interesting.

As a motivating example, consider the following program that has an if
expression nested in the predicate of another if.

(program ()
(if (if (eq? (read) 1)

(eq? (read) 0)
(eq? (read) 2))

(+ 10 32)
(+ 700 77)))

The naive way to compile if and eq? would be to handle each of them
in isolation, regardless of their context. Each eq? would be translated
into a cmpq instruction followed by a couple instructions to move the result
from the EFLAGS register into a general purpose register or stack location.
Each if would be translated into the combination of a cmpq and jmp-if.
However, if we take context into account we can do better and reduce the
use of cmpq and EFLAG-accessing instructions.

One idea is to try and reorganize the code at the level of R2, pushing
the outer if inside the inner one. This would yield the following code.

(if (eq? (read) 1)
(if (eq? (read) 0)

(+ 10 32)
(+ 700 77))

(if (eq? (read) 2))
(+ 10 32)
(+ 700 77))

Unfortunately, this approach duplicates the two branches, and a compiler
must never duplicate code!

We need a way to perform the above transformation, but without dupli-
cating code. The solution is straightforward if we think at the level of x86
assembly: we can label the code for each of the branches and insert goto’s
in all the places that need to execute the branches. Put another way, we
need to move away from abstract syntax trees and instead use graphs. In
particular, we shall use a standard program representation called a control
flow graph (CFG), due to Frances Elizabeth Allen [1970]. Each vertex is
a labeled sequence of code, called a basic block, and each edge represents
a jump to another block. The program construct of C0 and C1 represents

62 4. BOOLEANS AND CONTROL FLOW

(program ()
(if (if (eq? (read) 1)

(eq? (read) 0)
(eq? (read) 2))

(+ 10 32)
(+ 700 77)))

⇓
(program ()
(if (if (let ([tmp52 (read)])

(eq? tmp52 1))
(let ([tmp53 (read)])
(eq? tmp53 0))

(let ([tmp54 (read)])
(eq? tmp54 2)))

(+ 10 32)
(+ 700 77)))

⇒

(program ()
((block62 .

(seq (assign tmp54 (read))
(if (eq? tmp54 2)

(goto block59)
(goto block60))))

(block61 .
(seq (assign tmp53 (read))

(if (eq? tmp53 0)
(goto block57)
(goto block58))))

(block60 . (goto block56))
(block59 . (goto block55))
(block58 . (goto block56))
(block57 . (goto block55))
(block56 . (return (+ 700 77)))
(block55 . (return (+ 10 32)))
(start .
(seq (assign tmp52 (read))

(if (eq? tmp52 1)
(goto block61)
(goto block62))))))

Figure 4.6: Example translation from R2 to C1 via the explicate-control.

a control flow graph as an association list mapping labels to basic blocks.
Each block is represented by the tail non-terminal.

Figure 4.6 shows the output of the remove-complex-opera* pass and
then the explicate-control pass on the example program. We shall walk
through the output program and then discuss the algorithm. Following
the order of evaluation in the output of remove-complex-opera*, we first
have the (read) and comparison to 1 from the predicate of the inner if.
In the output of explicate-control, in the start block, this becomes a
(read) followed by a conditional goto to either block61 or block62. Each
of these contains the translations of the code (eq? (read) 0) and (eq?
(read) 1), respectively. Regarding block61, we start with the (read)
and comparison to 0 and then have a conditional goto, either to block59 or
block60, which indirectly take us to block55 and block56, the two branches
of the outer if, i.e., (+ 10 32) and (+ 700 77). The story for block62 is
similar.

The nice thing about the output of explicate-control is that there

4.6. EXPLICATE CONTROL 63

are no unnecessary uses of eq? and every use of eq? is part of a conditional
jump. The down-side of this output is that it includes trivial blocks, such
as block57 through block60, that only jump to another block. We discuss
a solution to this problem in Section 4.11.

Recall that in Section 2.6 we implement the explicate-control pass for
R1 using two mutually recursive functions, explicate-control-tail and
explicate-control-assign. The former function translated expressions in
tail position whereas the later function translated expressions on the right-
hand-side of a let. With the addition of if expression in R2 we have a
new kind of context to deal with: the predicate position of the if. So we
shall need another function, explicate-control-pred, that takes an R2
expression and two pieces of C1 code (two tail’s) for the then-branch and
else-branch. The output of explicate-control-pred is a C1 tail. However,
these three functions also need to contruct the control-flow graph, which we
recommend they do via updates to a global variable. Next we consider the
specific additions to the tail and assign functions, and some of cases for the
pred function.

The explicate-control-tail function needs an additional case for if.
The branches of the if inherit the current context, so they are in tail posi-
tion. Let B1 be the result of explicate-control-tail on the thn branch
and B2 be the result of apply explicate-control-tail to the else branch.
Then the if translates to the block B3 which is the result of applying
explicate-control-pred to the predicate cnd and the blocks B1 and B2.

(if cnd thn els) ⇒ B3

Next we consider the case for if in the explicate-control-assign
function. So the context of the if is an assignment to some variable x and
then the control continues to some block B1. The code that we generate for
both the thn and els branches shall both need to continue to B1, so we add
B1 to the control flow graph with a fresh label `1. Again, the branches of the
if inherit the current context, so that are in assignment positions. Let B2
be the result of applying explicate-control-assign to the thn branch,
variable x, and the block (goto `1). Let B3 be the result of applying
explicate-control-assign to the else branch, variable x, and the block
(goto `1). The if translates to the block B4 which is the result of applying
explicate-control-pred to the predicate cnd and the blocks B2 and B3.

(if cnd thn els) ⇒ B4

The function explicate-control-pred will need a case for every ex-
pression that can have type Boolean. We detail a few cases here and leave

64 4. BOOLEANS AND CONTROL FLOW

the rest for the reader. The input to this function is an expression and two
blocks, B1 and B2, for the branches of the enclosing if. One of the base
cases of this function is when the expression is a less-than comparision. We
translate it to a conditional goto. We need labels for the two branches B1
and B2, so we add them to the control flow graph and obtain some labels
`1 and `2. The translation of the less-than comparison is as follows.

(< e1 e2) ⇒ (if (< e1 e2) (goto `1) (goto `2))

The case for if in explicate-control-pred is particularly illuminating,
as it deals with the challenges that we discussed above regarding the example
of the nested if expressions. Again, we add the two input branches B1 and
B2 to the control flow graph and obtain the labels `1 and `2. The branches
thn and els of the current if inherit their context from the current one, i.e.,
predicate context. So we apply explicate-control-pred to thn with the
two blocks (goto `1) and (goto `2), to obtain B3. Similarly for the els
branch, to obtain B4. Finally, we apply explicate-control-pred to the
predicate cnd and the blocks B3 and B4 to obtain the result B5.

(if cnd thn els) ⇒ B5

Exercise 15. Implement the pass explicate-code by adding the cases for
if to the functions for tail and assignment contexts, and implement the
function for predicate contexts. Create test cases that exercise all of the
new cases in the code for this pass.

4.7 Select Instructions
Recall that the select-instructions pass lowers from our C-like inter-
mediate representation to the pseudo-x86 language, which is suitable for
conducting register allocation. The pass is implemented using three auxil-
liary functions, one for each of the non-terminals arg, stmt, and tail.

For arg, we have new cases for the Booleans. We take the usual approach
of encoding them as integers, with true as 1 and false as 0.

#t⇒ 1 #f⇒ 0

For stmt, we discuss a couple cases. The not operation can be imple-
mented in terms of xorq as we discussed at the beginning of this section.
Given an assignment (assign lhs (not arg)), if the left-hand side lhs is
the same as arg, then just the xorq suffices:

(assign x (not x)) ⇒ ((xorq (int 1) x′))

4.8. REGISTER ALLOCATION 65

Otherwise, a movq is needed to adapt to the update-in-place semantics of
x86. Let arg′ be the result of recursively processing arg. Then we have

(assign lhs (not arg)) ⇒ ((movq arg′ lhs′) (xorq (int 1) lhs′))

Next consider the cases for eq? and less-than comparison. Translating
these operations to x86 is slightly involved due to the unusual nature of the
cmpq instruction discussed above. We recommend translating an assignment
from eq? into the following sequence of three instructions.

(assign lhs (eq? arg1 arg2)) ⇒
(cmpq arg′2 arg′1)
(set e (byte-reg al))
(movzbq (byte-reg al) lhs′)

Regarding the tail non-terminal, we have two new cases, for goto and
conditional goto. Both are straightforward to handle. A goto becomes a
jump instruction.

(goto `) ⇒ ((jmp `))

A conditional goto becomes a compare instruction followed by a conditional
jump (for “then”) and the fall-through is to a regular jump (for “else”).

(if (eq? arg1 arg2)
(goto `1)
(goto `2))

⇒
((cmpq arg′2 arg′1)
(jmp-if e `1)
(jmp `2))

Exercise 16. Expand your select-instructions pass to handle the new
features of the R2 language. Test the pass on all the examples you have
created and make sure that you have some test programs that use the eq?
and < operators, creating some if necessary. Test the output using the
interp-x86 interpreter (Appendix 12.1).

4.8 Register Allocation

The changes required for R2 affect the liveness analysis, building the inter-
ference graph, and assigning homes, but the graph coloring algorithm itself
does not need to change.

4.8.1 Liveness Analysis

Recall that for R1 we implemented liveness analysis for a single basic block
(Section 3.2). With the addition of if expressions to R2, explicate-control

66 4. BOOLEANS AND CONTROL FLOW

now produces many basic blocks arranged in a control-flow graph. The first
question we need to consider is in what order should we process the basic
blocks? Recall that to perform liveness analysis, we need to know the live-
after set. If a basic block has no successor blocks, then it has an empty
live-after set and we can immediately apply liveness analysis to it. If a basic
block has some successors, then we need to complete liveness analysis on
those blocks first. Furthermore, we know that the control flow graph does
not contain any cycles (it is a DAG, that is, a directed acyclic graph)1. What
all this amounts to is that we need to process the basic blocks in reverse
topological order. We recommend using the tsort and transpose functions
of the Racket graph package to obtain this ordering.

The next question is how to compute the live-after set of a block given
the live-before sets of all its successor blocks. During compilation we do
not know which way the branch will go, so we do not know which of the
successor’s live-before set to use. The solution comes from the observation
that there is no harm in identifying more variables as live than absolutely
necessary. Thus, we can take the union of the live-before sets from all the
successors to be the live-after set for the block. Once we have computed the
live-after set, we can proceed to perform liveness analysis on the block just
as we did in Section 3.2.

The helper functions for computing the variables in an instruction’s ar-
gument and for computing the variables read-from (R) or written-to (W)
by an instruction need to be updated to handle the new kinds of arguments
and instructions in x861.

4.8.2 Build Interference

Many of the new instructions in x861 can be handled in the same way as the
instructions in x860. Thus, if your code was already quite general, it will not
need to be changed to handle the new instructions. If not, I recommend that
you change your code to be more general. The movzbq instruction should
be handled like the movq instruction.

Exercise 17. Update the register-allocation pass so that it works for
R2 and test your compiler using your previously created programs on the
interp-x86 interpreter (Appendix 12.1).

1If we were to add loops to the language, then the CFG could contain cycles and we
would instead need to use the classic worklist algorithm for computing the fixed point of
the liveness analysis [Aho et al., 1986].

4.9. PATCH INSTRUCTIONS 67

4.9 Patch Instructions
The second argument of the cmpq instruction must not be an immediate
value (such as a literal integer). So if you are comparing two immediates,
we recommend inserting a movq instruction to put the second argument in
rax. The second argument of the movzbq must be a register. There are no
special restrictions on the x86 instructions jmp-if, jmp, and label.

Exercise 18. Update patch-instructions to handle the new x86 instruc-
tions. Test your compiler using your previously created programs on the
interp-x86 interpreter (Appendix 12.1).

4.10 An Example Translation
Figure 4.7 shows a simple example program in R2 translated to x86, showing
the results of explicate-control, select-instructions, and the final x86
assembly code.

Figure 4.8 lists all the passes needed for the compilation of R2.

4.11 Challenge: Optimize Jumps∗

UNDER CONSTRUCTION

68 4. BOOLEANS AND CONTROL FLOW

(program ()
(if (eq? (read) 1) 42 0))

⇓
(program ()
((block32 . (return 0))
(block31 . (return 42))
(start .

(seq (assign tmp30 (read))
(if (eq? tmp30 1)

(goto block31)
(goto block32))))))

⇓
(program ((locals . (tmp30)))
((block32 .

(block ()
(movq (int 0) (reg rax))
(jmp conclusion)))

(block31 .
(block ()
(movq (int 42) (reg rax))
(jmp conclusion)))

(start .
(block ()
(callq read_int)
(movq (reg rax) (var tmp30))
(cmpq (int 1) (var tmp30))
(jmp-if e block31)
(jmp block32)))))

⇒

_block31:
movq $42, %rax
jmp _conclusion

_block32:
movq $0, %rax
jmp _conclusion

_start:
callq _read_int
movq %rax, %rcx
cmpq $1, %rcx
je _block31
jmp _block32

.globl _main
_main:

pushq %rbp
movq %rsp, %rbp
pushq %r12
pushq %rbx
pushq %r13
pushq %r14
subq $0, %rsp
jmp _start

_conclusion:
addq $0, %rsp
popq %r14
popq %r13
popq %rbx
popq %r12
popq %rbp
retq

Figure 4.7: Example compilation of an if expression to x86.

4.11. CHALLENGE: OPTIMIZE JUMPS∗ 69

R2 R2 R2 R2 R2

C1C1

x86∗ x86∗ x86∗ x86†

x86∗ x86∗

typecheck shrink uniquify remove-complex.

explicate-controluncover-locals

select-instr.

uncover-live

build-inter.

allocate-reg.

patch-instr. print-x86

Figure 4.8: Diagram of the passes for R2, a language with conditionals.

70 4. BOOLEANS AND CONTROL FLOW

5

Tuples and Garbage
Collection

In this chapter we study the implementation of mutable tuples (called “vec-
tors” in Racket). This language feature is the first to use the computer’s
heap because the lifetime of a Racket tuple is indefinite, that is, a tuple lives
forever from the programmer’s viewpoint. Of course, from an implemen-
tor’s viewpoint, it is important to reclaim the space associated with a tuple
when it is no longer needed, which is why we also study garbage collection
techniques in this chapter.

Section 5.1 introduces the R3 language including its interpreter and type
checker. The R3 language extends the R2 language of Chapter 4 with vectors
and Racket’s “void” value. The reason for including the later is that the
vector-set! operation returns a value of type Void1.

Section 5.2 describes a garbage collection algorithm based on copying live
objects back and forth between two halves of the heap. The garbage collec-
tor requires coordination with the compiler so that it can see all of the root
pointers, that is, pointers in registers or on the procedure call stack. Sec-
tions 5.3 through 5.8 discuss all the necessary changes and additions to the
compiler passes, including a new compiler pass named expose-allocation.

1This may sound contradictory, but Racket’s Void type corresponds to what is more
commonly called the Unit type. This type is inhabited by a single value that is usually
written unit or ()[Pierce, 2002].

71

72 5. TUPLES AND GARBAGE COLLECTION

(let ([t (vector 40 #t (vector 2))])
(if (vector-ref t 1)

(+ (vector-ref t 0)
(vector-ref (vector-ref t 2) 0))

44))

Figure 5.1: Example program that creates tuples and reads from them.

type ::= Integer | Boolean | (Vector type+) | Void
cmp ::= eq? | < | <= | > | >=
exp ::= int | (read) | (- exp) | (+ exp exp) | (- exp exp)

| var | (let ([var exp]) exp)
| #t | #f | (and exp exp) | (or exp exp) | (not exp)
| (cmp exp exp) | (if exp exp exp)
| (vector exp+) | (vector-ref exp int)
| (vector-set! exp int exp)
| (void)

R3 ::= (program exp)

Figure 5.2: The syntax of R3, extending R2 (Figure 4.1) with tuples.

5.1 The R3 Language

Figure 5.2 defines the syntax for R3, which includes three new forms for
creating a tuple, reading an element of a tuple, and writing to an element
of a tuple. The program in Figure 5.1 shows the usage of tuples in Racket.
We create a 3-tuple t and a 1-tuple. The 1-tuple is stored at index 2 of
the 3-tuple, demonstrating that tuples are first-class values. The element at
index 1 of t is #t, so the “then” branch is taken. The element at index 0 of
t is 40, to which we add the 2, the element at index 0 of the 1-tuple.

Tuples are our first encounter with heap-allocated data, which raises
several interesting issues. First, variable binding performs a shallow-copy
when dealing with tuples, which means that different variables can refer to
the same tuple, i.e., different variables can be aliases for the same thing.
Consider the following example in which both t1 and t2 refer to the same
tuple. Thus, the mutation through t2 is visible when referencing the tuple
from t1, so the result of this program is 42.

(let ([t1 (vector 3 7)])
(let ([t2 t1])

5.2. GARBAGE COLLECTION 73

(let ([_ (vector-set! t2 0 42)])
(vector-ref t1 0))))

The next issue concerns the lifetime of tuples. Of course, they are created
by the vector form, but when does their lifetime end? Notice that the
grammar in Figure 5.2 does not include an operation for deleting tuples.
Furthermore, the lifetime of a tuple is not tied to any notion of static scoping.
For example, the following program returns 3 even though the variable t goes
out of scope prior to accessing the vector.

(vector-ref
(let ([t (vector 3 7)])
t)

0)

From the perspective of programmer-observable behavior, tuples live forever.
Of course, if they really lived forever, then many programs would run out
of memory.2 A Racket implementation must therefore perform automatic
garbage collection.

Figure 5.3 shows the definitional interpreter for the R3 language and
Figure 5.4 shows the type checker. The additions to the interpreter are
straightforward but the updates to the type checker deserve some explana-
tion. As we shall see in Section 5.2, we need to know which variables are
pointers into the heap, that is, which variables are vectors. Also, when al-
locating a vector, we shall need to know which elements of the vector are
pointers. We can obtain this information during type checking and when we
uncover local variables. The type checker in Figure 5.4 not only computes
the type of an expression, it also wraps every sub-expression e with the form
(has-type e T), where T is e’s type. Subsequently, in the uncover-locals
pass (Section 5.5) this type information is propagated to all variables (in-
cluding the temporaries generated by remove-complex-opera*).

5.2 Garbage Collection
Here we study a relatively simple algorithm for garbage collection that is
the basis of state-of-the-art garbage collectors [Lieberman and Hewitt, 1983,
Ungar, 1984, Jones and Lins, 1996, Detlefs et al., 2004, Dybvig, 2006, Tene
et al., 2011]. In particular, we describe a two-space copying collector [Wilson,
1992] that uses Cheney’s algorithm to perform the copy [Cheney, 1970].

2The R3 language does not have looping or recursive function, so it is nigh impossible
to write a program in R3 that will run out of memory. However, we add recursive functions
in the next Chapter!

74 5. TUPLES AND GARBAGE COLLECTION

(define primitives (set ... ’vector ’vector-ref ’vector-set!))

(define (interp-op op)
(match op

...
[’vector vector]
[’vector-ref vector-ref]
[’vector-set! vector-set!]
[else (error ’interp-op "unknown␣operator")]))

(define (interp-R3 env)
(lambda (e)
(match e
...
[else (error ’interp-R3 "unrecognized␣expression")]
)))

Figure 5.3: Interpreter for the R3 language.

Figure 5.5 gives a coarse-grained depiction of what happens in a two-space
collector, showing two time steps, prior to garbage collection on the top
and after garbage collection on the bottom. In a two-space collector, the
heap is divided into two parts, the FromSpace and the ToSpace. Initially,
all allocations go to the FromSpace until there is not enough room for the
next allocation request. At that point, the garbage collector goes to work
to make more room.

The garbage collector must be careful not to reclaim tuples that will be
used by the program in the future. Of course, it is impossible in general to
predict what a program will do, but we can overapproximate the will-be-
used tuples by preserving all tuples that could be accessed by any program
given the current computer state. A program could access any tuple whose
address is in a register or on the procedure call stack. These addresses are
called the root set. In addition, a program could access any tuple that is
transitively reachable from the root set. Thus, it is safe for the garbage
collector to reclaim the tuples that are not reachable in this way.

So the goal of the garbage collector is twofold:

1. preserve all tuple that are reachable from the root set via a path of
pointers, that is, the live tuples, and

2. reclaim the memory of everything else, that is, the garbage.

5.2. GARBAGE COLLECTION 75

(define (type-check-exp env)
(lambda (e)
(define recur (type-check-exp env))
(match e
...
[’(void) (values ’(has-type (void) Void) ’Void)]
[‘(vector ,es ...)
(define-values (e* t*) (for/lists (e* t*) ([e es])

(recur e)))
(let ([t ‘(Vector ,@t*)])
(debug "vector/type-check-exp␣finished␣vector" t)
(values ‘(has-type (vector ,@e*) ,t) t))]

[‘(vector-ref ,e ,i)
(define-values (e^ t) (recur e))
(match t
[‘(Vector ,ts ...)
(unless (and (exact-nonnegative-integer? i) (< i (length ts)))
(error ’type-check-exp "invalid␣index␣~a" i))

(let ([t (list-ref ts i)])
(values ‘(has-type (vector-ref ,e^ (has-type ,i Integer)) ,t)

t))]
[else (error "expected␣a␣vector␣in␣vector-ref,␣not" t)])]

[‘(eq? ,arg1 ,arg2)
(define-values (e1 t1) (recur arg1))
(define-values (e2 t2) (recur arg2))
(match* (t1 t2)
[(‘(Vector ,ts1 ...) ‘(Vector ,ts2 ...))
(values ‘(has-type (eq? ,e1 ,e2) Boolean) ’Boolean)]
[(other wise) ((super type-check-exp env) e)])]

...
)))

Figure 5.4: Type checker for the R3 language.

76 5. TUPLES AND GARBAGE COLLECTION

A copying collector accomplishes this by copying all of the live objects from
the FromSpace into the ToSpace and then performs a slight of hand, treating
the ToSpace as the new FromSpace and the old FromSpace as the new
ToSpace. In the example of Figure 5.5, there are three pointers in the root
set, one in a register and two on the stack. All of the live objects have
been copied to the ToSpace (the right-hand side of Figure 5.5) in a way that
preserves the pointer relationships. For example, the pointer in the register
still points to a 2-tuple whose first element is a 3-tuple and second element is
a 2-tuple. There are four tuples that are not reachable from the root set and
therefore do not get copied into the ToSpace. (The sitation in Figure 5.5,
with a cycle, cannot be created by a well-typed program in R3. However,
creating cycles will be possible once we get to R6. We design the garbage
collector to deal with cycles to begin with, so we will not need to revisit this
issue.)

There are many alternatives to copying collectors (and their older sib-
lings, the generational collectors) when its comes to garbage collection, such
as mark-and-sweep and reference counting. The strengths of copying col-
lectors are that allocation is fast (just a test and pointer increment), there
is no fragmentation, cyclic garbage is collected, and the time complexity of
collection only depends on the amount of live data, and not on the amount
of garbage [Wilson, 1992]. The main disadvantage of two-space copying col-
lectors is that they use a lot of space, though that problem is ameliorated
in generational collectors. Racket and Scheme programs tend to allocate
many small objects and generate a lot of garbage, so copying and genera-
tional collectors are a good fit. Of course, garbage collection is an active
research topic, especially concurrent garbage collection [Tene et al., 2011].
Researchers are continuously developing new techniques and revisiting old
trade-offs [Blackburn et al., 2004, Jones et al., 2011, Shahriyar et al., 2013,
Cutler and Morris, 2015, Shidal et al., 2015].

5.2.1 Graph Copying via Cheney’s Algorithm

Let us take a closer look at how the copy works. The allocated objects
and pointers can be viewed as a graph and we need to copy the part of
the graph that is reachable from the root set. To make sure we copy all of
the reachable vertices in the graph, we need an exhaustive graph traversal
algorithm, such as depth-first search or breadth-first search [Moore, 1959,
Cormen et al., 2001]. Recall that such algorithms take into account the
possibility of cycles by marking which vertices have already been visited, so
as to ensure termination of the algorithm. These search algorithms also use

5.2. GARBAGE COLLECTION 77

7 5

#t 42

4

8

3

5

6

2

Stack

Registers

1 #f …

9

#t
0

…

Heap
FromSpace ToSpace

7 5

#t 42

4

8

3

5

6

2

Stack

Registers

1 #f …

9

#t
0

…

Heap
FromSpace ToSpace

7 5

#t 42

4

8

3

Figure 5.5: A copying collector in action.

78 5. TUPLES AND GARBAGE COLLECTION

a data structure such as a stack or queue as a to-do list to keep track of
the vertices that need to be visited. We shall use breadth-first search and
a trick due to Cheney [1970] for simultaneously representing the queue and
copying tuples into the ToSpace.

Figure 5.6 shows several snapshots of the ToSpace as the copy progresses.
The queue is represented by a chunk of contiguous memory at the beginning
of the ToSpace, using two pointers to track the front and the back of the
queue. The algorithm starts by copying all tuples that are immediately
reachable from the root set into the ToSpace to form the initial queue.
When we copy a tuple, we mark the old tuple to indicate that it has been
visited. (We discuss the marking in Section 5.2.2.) Note that any pointers
inside the copied tuples in the queue still point back to the FromSpace. Once
the initial queue has been created, the algorithm enters a loop in which it
repeatedly processes the tuple at the front of the queue and pops it off
the queue. To process a tuple, the algorithm copies all the tuple that are
directly reachable from it to the ToSpace, placing them at the back of the
queue. The algorithm then updates the pointers in the popped tuple so
they point to the newly copied tuples. Getting back to Figure 5.6, in the
first step we copy the tuple whose second element is 42 to the back of the
queue. The other pointer goes to a tuple that has already been copied, so
we do not need to copy it again, but we do need to update the pointer to
the new location. This can be accomplished by storing a forwarding pointer
to the new location in the old tuple, back when we initially copied the tuple
into the ToSpace. This completes one step of the algorithm. The algorithm
continues in this way until the front of the queue is empty, that is, until the
front catches up with the back.

5.2.2 Data Representation

The garbage collector places some requirements on the data representations
used by our compiler. First, the garbage collector needs to distinguish be-
tween pointers and other kinds of data. There are several ways to accomplish
this.

1. Attached a tag to each object that identifies what type of object it
is [McCarthy, 1960].

2. Store different types of objects in different regions [Steele, 1977].

3. Use type information from the program to either generate type-specific
code for collecting or to generate tables that can guide the collec-
tor [Appel, 1989, Goldberg, 1991, Diwan et al., 1992].

5.2. GARBAGE COLLECTION 79

7 5 4

scan
pointer

free
pointer

7 5 4

scan
pointer

free
pointer

#t 42

7 5 4

scan
pointer

free
pointer

#t 42 3

7 5 4

scan
pointer

free
pointer

#t 42 3 8

7 5 4

scan
pointer

free
pointer

#t 42 3 8

Figure 5.6: Depiction of the Cheney algorithm copying the live tuples.

80 5. TUPLES AND GARBAGE COLLECTION

Stack

Registers

1 #f …

9
#t
0
…

Root Stack
7 5

4

Heap

Figure 5.7: Maintaining a root stack to facilitate garbage collection.

Dynamically typed languages, such as Lisp, need to tag objects anyways, so
option 1 is a natural choice for those languages. However, R3 is a statically
typed language, so it would be unfortunate to require tags on every object,
especially small and pervasive objects like integers and Booleans. Option
3 is the best-performing choice for statically typed languages, but comes
with a relatively high implementation complexity. To keep this chapter to a
2-week time budget, we recommend a combination of options 1 and 2, with
separate strategies used for the stack and the heap.

Regarding the stack, we recommend using a separate stack for point-
ers [Siebert, 2001, Henderson, 2002, Baker et al., 2009], which we call a root
stack (a.k.a. “shadow stack”). That is, when a local variable needs to be
spilled and is of type (Vector type1 . . . typen), then we put it on the root
stack instead of the normal procedure call stack. Furthermore, we always
spill vector-typed variables if they are live during a call to the collector,
thereby ensuring that no pointers are in registers during a collection. Fig-
ure 5.7 reproduces the example from Figure 5.5 and contrasts it with the
data layout using a root stack. The root stack contains the two pointers
from the regular stack and also the pointer in the second register.

The problem of distinguishing between pointers and other kinds of data
also arises inside of each tuple. We solve this problem by attaching a tag,
an extra 64-bits, to each tuple. Figure 5.8 zooms in on the tags for two of
the tuples in the example from Figure 5.5. Note that we have drawn the
bits in a big-endian way, from right-to-left, with bit location 0 (the least

5.2. GARBAGE COLLECTION 81

unused pointer mask vector length

forwarding

101000011…

7 5

111000000… 1

Figure 5.8: Representation for tuples in the heap.

significant bit) on the far right, which corresponds to the directionality of
the x86 shifting instructions salq (shift left) and sarq (shift right). Part of
each tag is dedicated to specifying which elements of the tuple are pointers,
the part labeled “pointer mask”. Within the pointer mask, a 1 bit indicates
there is a pointer and a 0 bit indicates some other kind of data. The pointer
mask starts at bit location 7. We have limited tuples to a maximum size
of 50 elements, so we just need 50 bits for the pointer mask. The tag also
contains two other pieces of information. The length of the tuple (number of
elements) is stored in bits location 1 through 6. Finally, the bit at location
0 indicates whether the tuple has yet to be copied to the ToSpace. If the
bit has value 1, then this tuple has not yet been copied. If the bit has value
0 then the entire tag is in fact a forwarding pointer. (The lower 3 bits of an
pointer are always zero anyways because our tuples are 8-byte aligned.)

5.2.3 Implementation of the Garbage Collector

The implementation of the garbage collector needs to do a lot of bit-level
data manipulation and we need to link it with our compiler-generated x86
code. Thus, we recommend implementing the garbage collector in C [Kernighan
and Ritchie, 1988] and putting the code in the runtime.c file. Figure 5.9
shows the interface to the garbage collector. The initialize function cre-
ates the FromSpace, ToSpace, and root stack. The initialize function is
meant to be called near the beginning of main, before the rest of the program
executes. The initialize function puts the address of the beginning of the
FromSpace into the global variable free_ptr. The global fromspace_end
points to the address that is 1-past the last element of the FromSpace. (We
use half-open intervals to represent chunks of memory [Dijkstra, 1982].) The

82 5. TUPLES AND GARBAGE COLLECTION

void initialize(uint64_t rootstack_size, uint64_t heap_size);
void collect(int64_t** rootstack_ptr, uint64_t bytes_requested);
int64_t* free_ptr;
int64_t* fromspace_begin;
int64_t* fromspace_end;
int64_t** rootstack_begin;

Figure 5.9: The compiler’s interface to the garbage collector.

rootstack_begin global points to the first element of the root stack.
As long as there is room left in the FromSpace, your generated code can

allocate tuples simply by moving the free_ptr forward. The amount of
room left in FromSpace is the difference between the fromspace_end and
the free_ptr. The collect function should be called when there is not
enough room left in the FromSpace for the next allocation. The collect
function takes a pointer to the current top of the root stack (one past the last
item that was pushed) and the number of bytes that need to be allocated.
The collect function performs the copying collection and leaves the heap
in a state such that the next allocation will succeed.

Exercise 19. In the file runtime.c you will find the implementation of
initialize and a partial implementation of collect. The collect func-
tion calls another function, cheney, to perform the actual copy, and that
function is left to the reader to implement. The following is the prototype
for cheney.

static void cheney(int64_t** rootstack_ptr);

The parameter rootstack_ptr is a pointer to the top of the rootstack (which
is an array of pointers). The cheney function also communicates with
collect through the global variables fromspace_begin and fromspace_end
mentioned in Figure 5.9 as well as the pointers for the ToSpace:

static int64_t* tospace_begin;
static int64_t* tospace_end;

The job of the cheney function is to copy all the live objects (reachable from
the root stack) into the ToSpace, update free_ptr to point to the next unused
spot in the ToSpace, update the root stack so that it points to the objects in
the ToSpace, and finally to swap the global pointers for the FromSpace and
ToSpace.

The introduction of garbage collection has a non-trivial impact on our
compiler passes. We introduce one new compiler pass called expose-allocation

5.3. EXPOSE ALLOCATION 83

and make non-trivial changes to type-check, flatten, select-instructions,
allocate-registers, and print-x86. The following program will serve as
our running example. It creates two tuples, one nested inside the other.
Both tuples have length one. The example then accesses the element in the
inner tuple tuple via two vector references.

(vector-ref (vector-ref (vector (vector 42)) 0) 0))

Next we proceed to discuss the new expose-allocation pass.

5.3 Expose Allocation
The pass expose-allocation lowers the vector creation form into a con-
ditional call to the collector followed by the allocation. We choose to place
the expose-allocation pass before flatten because expose-allocation
introduces new variables, which can be done locally with let, but let is
gone after flatten. In the following, we show the transformation for the
vector form into let-bindings for the intializing expressions, by a conditional
collect, an allocate, and the initialization of the vector. (The len is the
length of the vector and bytes is how many total bytes need to be allocated
for the vector, which is 8 for the tag plus len times 8.)
(has-type (vector e0 . . . en−1) type)

=⇒
(let ([x0 e0]) ... (let ([xn−1 en−1])
(let ([_ (if (< (+ (global-value free_ptr) bytes)

(global-value fromspace_end))
(void)
(collect bytes))])

(let ([v (allocate len type)])
(let ([_ (vector-set! v 0 x0)]) ...
(let ([_ (vector-set! v n− 1 xn−1)])

v) ...)))) ...)

(In the above, we suppressed all of the has-type forms in the output
for the sake of readability.) The placement of the initializing expressions
e0, . . . , en−1 prior to the allocate and the sequence of vector-set!’s is
important, as those expressions may trigger garbage collection and we do
not want an allocated but uninitialized tuple to be present during a garbage
collection.

The output of expose-allocation is a language that extends R3 with
the three new forms that we use above in the translation of vector.

exp ::= · · · | (collect int) | (allocate int type) | (global-valuename)

84 5. TUPLES AND GARBAGE COLLECTION

(program ()
(vector-ref
(vector-ref
(let ((vecinit48

(let ((vecinit44 42))
(let ((collectret46

(if (<
(+ (global-value free_ptr) 16)
(global-value fromspace_end))

(void)
(collect 16))))

(let ((alloc43 (allocate 1 (Vector Integer))))
(let ((initret45 (vector-set! alloc43 0 vecinit44)))
alloc43))))))

(let ((collectret50
(if (< (+ (global-value free_ptr) 16)

(global-value fromspace_end))
(void)
(collect 16))))

(let ((alloc47 (allocate 1 (Vector (Vector Integer)))))
(let ((initret49 (vector-set! alloc47 0 vecinit48)))
alloc47))))

0)
0))

Figure 5.10: Output of the expose-allocation pass, minus all of the
has-type forms.

Figure 5.10 shows the output of the expose-allocation pass on our
running example.

5.4 Explicate Control and the C2 language

The output of explicate-control is a program in the intermediate lan-
guage C2, whose syntax is defined in Figure 5.11. The new forms of C2
include the allocate, vector-ref, and vector-set!, and global-value
expressions and the collect statement. The explicate-control pass can
treat these new forms much like the other forms.

5.5. UNCOVER LOCALS 85

arg ::= int | var | #t | #f
cmp ::= eq? | <
exp ::= arg | (read) | (- arg) | (+ arg arg) | (not arg) | (cmp arg arg)

| (allocate int type) | (vector-ref arg int)
| (vector-set! arg int arg) | (global-valuename) | (void)

stmt ::= (assign var exp) | (return exp) | (collect int)
tail ::= (return exp) | (seq stmt tail)

| (goto label) | (if (cmp arg arg) (goto label) (goto label))
C2 ::= (program info ((label . tail)+))

Figure 5.11: The C2 language, extending C1 (Figure 4.5) with vectors.

5.5 Uncover Locals
Recall that the uncover-locals function collects all of the local variables so
that it can store them in the info field of the program form. Also recall that
we need to know the types of all the local variables for purposes of identifying
the root set for the garbage collector. Thus, we change uncover-locals to
collect not just the variables, but the variables and their types in the form
of an association list. Thanks to the has-type forms, the types are readily
available. Figure 5.12 lists the output of the uncover-locals pass on the
running example.

86 5. TUPLES AND GARBAGE COLLECTION

(program
((locals . ((tmp54 . Integer) (tmp51 . Integer) (tmp53 . Integer)

(alloc43 . (Vector Integer)) (tmp55 . Integer)
(initret45 . Void) (alloc47 . (Vector (Vector Integer)))
(collectret46 . Void) (vecinit48 . (Vector Integer))
(tmp52 . Integer) (tmp57 . (Vector Integer))
(vecinit44 . Integer) (tmp56 . Integer) (initret49 . Void)
(collectret50 . Void))))

((block63 . (seq (collect 16) (goto block61)))
(block62 . (seq (assign collectret46 (void)) (goto block61)))
(block61 . (seq (assign alloc43 (allocate 1 (Vector Integer)))

(seq (assign initret45 (vector-set! alloc43 0 vecinit44))
(seq (assign vecinit48 alloc43)
(seq (assign tmp54 (global-value free_ptr))
(seq (assign tmp55 (+ tmp54 16))
(seq (assign tmp56 (global-value fromspace_end))
(if (< tmp55 tmp56) (goto block59) (goto block60)))))))))

(block60 . (seq (collect 16) (goto block58)))
(block59 . (seq (assign collectret50 (void)) (goto block58)))
(block58 . (seq (assign alloc47 (allocate 1 (Vector (Vector Integer))))

(seq (assign initret49 (vector-set! alloc47 0 vecinit48))
(seq (assign tmp57 (vector-ref alloc47 0))
(return (vector-ref tmp57 0))))))

(start . (seq (assign vecinit44 42)
(seq (assign tmp51 (global-value free_ptr))
(seq (assign tmp52 (+ tmp51 16))
(seq (assign tmp53 (global-value fromspace_end))
(if (< tmp52 tmp53) (goto block62) (goto block63)))))))))

Figure 5.12: Output of uncover-locals for the running example.

5.6. SELECT INSTRUCTIONS 87

5.6 Select Instructions

In this pass we generate x86 code for most of the new operations that
were needed to compile tuples, including allocate, collect, vector-ref,
vector-set!, and (void). We postpone global-value to print-x86.

The vector-ref and vector-set! forms translate into movq instruc-
tions with the appropriate deref. (The plus one is to get past the tag at
the beginning of the tuple representation.)

(assign lhs (vector-ref vec n))
=⇒
(movq vec′ (reg r11))
(movq (deref r11 8(n + 1)) lhs)

(assign lhs (vector-set! vec n arg))
=⇒
(movq vec′ (reg r11))
(movq arg′ (deref r11 8(n + 1)))
(movq (int 0) lhs)

The vec′ and arg′ are obtained by recursively processing vec and arg. The
move of vec′ to register r11 ensures that offsets are only performed with
register operands. This requires removing r11 from consideration by the
register allocating.

We compile the allocate form to operations on the free_ptr, as shown
below. The address in the free_ptr is the next free address in the FromSpace,
so we move it into the lhs and then move it forward by enough space for the
tuple being allocated, which is 8(len + 1) bytes because each element is 8
bytes (64 bits) and we use 8 bytes for the tag. Last but not least, we initialize
the tag. Refer to Figure 5.8 to see how the tag is organized. We recommend
using the Racket operations bitwise-ior and arithmetic-shift to com-
pute the tag. The type annoation in the vector form is used to determine
the pointer mask region of the tag.

(assign lhs (allocate len (Vector type . . .)))
=⇒
(movq (global-value free_ptr) lhs′)
(addq (int 8(len + 1)) (global-value free_ptr))
(movq lhs′ (reg r11))
(movq (int tag) (deref r11 0))

The collect form is compiled to a call to the collect function in the
runtime. The arguments to collect are the top of the root stack and the
number of bytes that need to be allocated. We shall use a dedicated register,

88 5. TUPLES AND GARBAGE COLLECTION

arg ::= (int int) | (reg register) | (deref register int)
| (byte-reg register) | (global-value name)

cc ::= e | l | le | g | ge
instr ::= (addq arg arg) | (subq arg arg) | (negq arg) | (movq arg arg)

| (callq label) | (pushq arg) | (popq arg) | (retq)
| (xorq arg arg) | (cmpq arg arg) | (setcc arg)
| (movzbq arg arg) | (jmp label) | (jmp-ifcc label)
| (label label)

x862 ::= (program info (type type) instr+)

Figure 5.13: The x862 language (extends x861 of Figure 4.4).

r15, to store the pointer to the top of the root stack. So r15 is not available
for use by the register allocator.

(collect bytes)
=⇒
(movq (reg r15) (reg rdi))
(movq bytes (reg rsi))
(callq collect)

The syntax of the x862 language is defined in Figure 5.13. It differs from
x861 just in the addition of the form for global variables. Figure 5.14 shows
the output of the select-instructions pass on the running example.

5.6. SELECT INSTRUCTIONS 89

(program
((locals . ((tmp54 . Integer) (tmp51 . Integer) (tmp53 . Integer)

(alloc43 . (Vector Integer)) (tmp55 . Integer)
(initret45 . Void) (alloc47 . (Vector (Vector Integer)))
(collectret46 . Void) (vecinit48 . (Vector Integer))
(tmp52 . Integer) (tmp57 Vector Integer) (vecinit44 . Integer)
(tmp56 . Integer) (initret49 . Void) (collectret50 . Void))))

((block63 . (block ()
(movq (reg r15) (reg rdi))
(movq (int 16) (reg rsi))
(callq collect)
(jmp block61)))

(block62 . (block () (movq (int 0) (var collectret46)) (jmp block61)))
(block61 . (block ()

(movq (global-value free_ptr) (var alloc43))
(addq (int 16) (global-value free_ptr))
(movq (var alloc43) (reg r11))
(movq (int 3) (deref r11 0))
(movq (var alloc43) (reg r11))
(movq (var vecinit44) (deref r11 8))
(movq (int 0) (var initret45))
(movq (var alloc43) (var vecinit48))
(movq (global-value free_ptr) (var tmp54))
(movq (var tmp54) (var tmp55))
(addq (int 16) (var tmp55))
(movq (global-value fromspace_end) (var tmp56))
(cmpq (var tmp56) (var tmp55))
(jmp-if l block59)
(jmp block60)))

(block60 . (block ()
(movq (reg r15) (reg rdi))
(movq (int 16) (reg rsi))
(callq collect)
(jmp block58))

(block59 . (block ()
(movq (int 0) (var collectret50))
(jmp block58)))

(block58 . (block ()
(movq (global-value free_ptr) (var alloc47))
(addq (int 16) (global-value free_ptr))
(movq (var alloc47) (reg r11))
(movq (int 131) (deref r11 0))
(movq (var alloc47) (reg r11))
(movq (var vecinit48) (deref r11 8))
(movq (int 0) (var initret49))
(movq (var alloc47) (reg r11))
(movq (deref r11 8) (var tmp57))
(movq (var tmp57) (reg r11))
(movq (deref r11 8) (reg rax))
(jmp conclusion)))

(start . (block ()
(movq (int 42) (var vecinit44))
(movq (global-value free_ptr) (var tmp51))
(movq (var tmp51) (var tmp52))
(addq (int 16) (var tmp52))
(movq (global-value fromspace_end) (var tmp53))
(cmpq (var tmp53) (var tmp52))
(jmp-if l block62)
(jmp block63))))))

Figure 5.14: Output of the select-instructions pass.

90 5. TUPLES AND GARBAGE COLLECTION

5.7 Register Allocation
As discussed earlier in this chapter, the garbage collector needs to access all
the pointers in the root set, that is, all variables that are vectors. It will be
the responsibility of the register allocator to make sure that:

1. the root stack is used for spilling vector-typed variables, and

2. if a vector-typed variable is live during a call to the collector, it must
be spilled to ensure it is visible to the collector.

The later responsibility can be handled during construction of the in-
ference graph, by adding interference edges between the call-live vector-
typed variables and all the callee-saved registers. (They already interfere
with the caller-saved registers.) The type information for variables is in
the program form, so we recommend adding another parameter to the
build-interference function to communicate this association list.

The spilling of vector-typed variables to the root stack can be handled
after graph coloring, when choosing how to assign the colors (integers) to
registers and stack locations. The program output of this pass changes to
also record the number of spills to the root stack.

5.8 Print x86
Figure 5.15 shows the output of the print-x86 pass on the running example.
In the prelude and conclusion of the main function, we treat the root stack
very much like the regular stack in that we move the root stack pointer (r15)
to make room for all of the spills to the root stack, except that the root stack
grows up instead of down. For the running example, there was just one spill
so we increment r15 by 8 bytes. In the conclusion we decrement r15 by 8
bytes.

One issue that deserves special care is that there may be a call to collect
prior to the initializing assignments for all the variables in the root stack.
We do not want the garbage collector to accidentaly think that some unini-
tialized variable is a pointer that needs to be followed. Thus, we zero-out
all locations on the root stack in the prelude of main. In Figure 5.15, the
instruction movq $0, (%r15) accomplishes this task. The garbage collector
tests each root to see if it is null prior to dereferencing it.

Figure 5.16 gives an overview of all the passes needed for the compilation
of R3.

5.8. PRINT X86 91

_block58:
movq _free_ptr(%rip), %rcx
addq $16, _free_ptr(%rip)
movq %rcx, %r11
movq $131, 0(%r11)
movq %rcx, %r11
movq -8(%r15), %rax
movq %rax, 8(%r11)
movq $0, %rdx
movq %rcx, %r11
movq 8(%r11), %rcx
movq %rcx, %r11
movq 8(%r11), %rax
jmp _conclusion

_block59:
movq $0, %rcx
jmp _block58

_block62:
movq $0, %rcx
jmp _block61

_block60:
movq %r15, %rdi
movq $16, %rsi
callq _collect
jmp _block58

_block63:
movq %r15, %rdi
movq $16, %rsi
callq _collect
jmp _block61

_start:
movq $42, %rbx
movq _free_ptr(%rip), %rdx
addq $16, %rdx
movq _fromspace_end(%rip), %rcx
cmpq %rcx, %rdx
jl _block62
jmp _block63

_block61:
movq _free_ptr(%rip), %rcx
addq $16, _free_ptr(%rip)
movq %rcx, %r11
movq $3, 0(%r11)
movq %rcx, %r11
movq %rbx, 8(%r11)
movq $0, %rdx
movq %rcx, -8(%r15)
movq _free_ptr(%rip), %rcx
addq $16, %rcx
movq _fromspace_end(%rip), %rdx
cmpq %rdx, %rcx
jl _block59
jmp _block60

.globl _main
_main:

pushq %rbp
movq %rsp, %rbp
pushq %r12
pushq %rbx
pushq %r13
pushq %r14
subq $0, %rsp
movq $16384, %rdi
movq $16, %rsi
callq _initialize
movq _rootstack_begin(%rip), %r15
movq $0, (%r15)
addq $8, %r15
jmp _start

_conclusion:
subq $8, %r15
addq $0, %rsp
popq %r14
popq %r13
popq %rbx
popq %r12
popq %rbp
retq

Figure 5.15: Output of the print-x86 pass.

92 5. TUPLES AND GARBAGE COLLECTION

R3 R3 R3 R3 R3

C2 C2

x86∗2 x86∗2 x86∗2

x86†2x86∗2 x86∗2

typecheck uniquify expose-alloc. remove-complex.

explicate-controluncover-locals

select-instr.

uncover-live

build-inter.

allocate-reg.

patch-instr.

print-x86

Figure 5.16: Diagram of the passes for R3, a language with tuples.

6

Functions

This chapter studies the compilation of functions at the level of abstraction
of the C language. This corresponds to a subset of Typed Racket in which
only top-level function definitions are allowed. These kind of functions are
an important stepping stone to implementing lexically-scoped functions in
the form of lambda abstractions, which is the topic of Chapter 7.

6.1 The R4 Language
The syntax for function definitions and function application is shown in
Figure 6.1, where we define the R4 language. Programs in R4 start with
zero or more function definitions. The function names from these definitions
are in-scope for the entire program, including all other function definitions
(so the ordering of function definitions does not matter). The syntax for
function application does not include an explicit keyword, which is error
prone when using match. To alleviate this problem, we change the syntax
from (exp exp∗) to (app exp exp∗) during type checking.

Functions are first-class in the sense that a function pointer is data and
can be stored in memory or passed as a parameter to another function.
Thus, we introduce a function type, written

(type1 · · · typen -> typer)

for a function whose n parameters have the types type1 through typen and
whose return type is typer. The main limitation of these functions (with
respect to Racket functions) is that they are not lexically scoped. That is,
the only external entities that can be referenced from inside a function body
are other globally-defined functions. The syntax of R4 prevents functions
from being nested inside each other.

93

94 6. FUNCTIONS

type ::= Integer | Boolean | (Vector type+) | Void | (type∗ -> type)
cmp ::= eq? | < | <= | > | >=
exp ::= int | (read) | (- exp) | (+ exp exp) | (- exp exp)

| var | (let ([var exp]) exp)
| #t | #f | (and exp exp) | (or exp exp) | (not exp)
| (cmp exp exp) | (if exp exp exp)
| (vector exp+) | (vector-ref exp int)
| (vector-set! exp int exp) | (void)
| (exp exp∗)

def ::= (define (var [var:type]∗):type exp)
R4 ::= (program info def ∗ exp)

Figure 6.1: Syntax of R4, extending R3 (Figure 5.2) with functions.

(program ()
(define (map-vec [f : (Integer -> Integer)]

[v : (Vector Integer Integer)])
: (Vector Integer Integer)

(vector (f (vector-ref v 0)) (f (vector-ref v 1))))
(define (add1 [x : Integer]) : Integer
(+ x 1))

(vector-ref (map-vec add1 (vector 0 41)) 1)
)

Figure 6.2: Example of using functions in R4.

The program in Figure 6.2 is a representative example of defining and
using functions in R4. We define a function map-vec that applies some other
function f to both elements of a vector (a 2-tuple) and returns a new vector
containing the results. We also define a function add1 that does what its
name suggests. The program then applies map-vec to add1 and (vector 0
41). The result is (vector 1 42), from which we return the 42.

The definitional interpreter for R4 is in Figure 6.3. The case for the
program form is responsible for setting up the mutual recursion between
the top-level function definitions. We use the classic backpatching approach
that uses mutable variables and makes two passes over the function defini-
tions [Kelsey et al., 1998]. In the first pass we set up the top-level environ-
ment using a mutable cons cell for each function definition. Note that the
lambda value for each function is incomplete; it does not yet include the en-

6.2. FUNCTIONS IN X86 95

vironment. Once the top-level environment is constructed, we then iterate
over it and update the lambda value’s to use the top-level environment.

6.2 Functions in x86

The x86 architecture provides a few features to support the implementation
of functions. We have already seen that x86 provides labels so that one can
refer to the location of an instruction, as is needed for jump instructions.
Labels can also be used to mark the beginning of the instructions for a
function. Going further, we can obtain the address of a label by using the
leaq instruction and rip-relative addressing. For example, the following
puts the address of the add1 label into the rbx register.

leaq add1(%rip), %rbx

In Section 2.2 we saw the use of the callq instruction for jumping to a
function whose location is given by a label. Here we instead will be jumping
to a function whose location is given by an address, that is, we need to
make an indirect function call. The x86 syntax is to give the register name
prefixed with an asterisk.

callq *%rbx

6.2.1 Calling Conventions

The callq instruction provides partial support for implementing functions,
but it does not handle (1) parameter passing, (2) saving and restoring frames
on the procedure call stack, or (3) determining how registers are shared by
different functions. These issues require coordination between the caller and
the callee, which is often assembly code written by different programmers
or generated by different compilers. As a result, people have developed
conventions that govern how functions calls are performed. Here we shall
use the same conventions used by the gcc compiler [Matz et al., 2013].

Regarding (1) parameter passing, the convention is to use the following
six registers: rdi, rsi, rdx, rcx, r8, and r9, in that order. If there are more
than six arguments, then the convention is to use space on the frame of the
caller for the rest of the arguments. However, to ease the implementation of
efficient tail calls (Section 6.2.2), we shall arrange to never have more than
six arguments. The register rax is for the return value of the function.

Regarding (2) frames and the procedure call stack, the convention is that
the stack grows down, with each function call using a chunk of space called

96 6. FUNCTIONS

(define (interp-exp env)
(lambda (e)
(define recur (interp-exp env))
(match e
...
[‘(,fun ,args ...)
(define arg-vals (for/list ([e args]) (recur e)))
(define fun-val (recur fun))
(match fun-val
[‘(lambda (,xs ...) ,body ,fun-env)
(define new-env (append (map cons xs arg-vals) fun-env))
((interp-exp new-env) body)]
[else (error "interp-exp,␣expected␣function,␣not" fun-val)])]

[else (error ’interp-exp "unrecognized␣expression")]
)))

(define (interp-def d)
(match d
[‘(define (,f [,xs : ,ps] ...) : ,rt ,body)
(mcons f ‘(lambda ,xs ,body ()))]
))

(define (interp-R4 p)
(match p
[‘(program ,ds ... ,body)
(let ([top-level (for/list ([d ds]) (interp-def d))])
(for/list ([b top-level])
(set-mcdr! b (match (mcdr b)

[‘(lambda ,xs ,body ())
‘(lambda ,xs ,body ,top-level)])))

((interp-exp top-level) body))]
))

Figure 6.3: Interpreter for the R4 language.

6.2. FUNCTIONS IN X86 97

Caller View Callee View Contents Frame
8(%rbp) return address

Caller
0(%rbp) old rbp
-8(%rbp) callee-saved 1

.
−8j(%rbp) callee-saved j

−8(j + 1)(%rbp) local 1
.

−8(j + k)(%rbp) local k

8(%rbp) return address

Callee
0(%rbp) old rbp
-8(%rbp) callee-saved 1

.
−8n(%rbp) callee-saved n

−8(n + 1)(%rbp) local 1
.

−8(n + m)(%rsp) local m

Figure 6.4: Memory layout of caller and callee frames.

a frame. The caller sets the stack pointer, register rsp, to the last data item
in its frame. The callee must not change anything in the caller’s frame, that
is, anything that is at or above the stack pointer. The callee is free to use
locations that are below the stack pointer.

Regarding (3) the sharing of registers between different functions, recall
from Section 3.1 that the registers are divided into two groups, the caller-
saved registers and the callee-saved registers. The caller should assume that
all the caller-saved registers get overwritten with arbitrary values by the
callee. Thus, the caller should either 1) not put values that are live across a
call in caller-saved registers, or 2) save and restore values that are live across
calls. We shall recommend option 1). On the flip side, if the callee wants
to use a callee-saved register, the callee must save the contents of those
registers on their stack frame and then put them back prior to returning
to the caller. The base pointer, register rbp, is used as a point-of-reference
within a frame, so that each local variable can be accessed at a fixed offset
from the base pointer. Figure 6.4 shows the layout of the caller and callee
frames.

98 6. FUNCTIONS

6.2.2 Efficient Tail Calls

In general, the amount of stack space used by a program is determined by
the longest chain of nested function calls. That is, if function f1 calls f2, f2
calls f3, . . ., and fn−1 calls fn, then the amount of stack space is bounded by
O(n). The depth n can grow quite large in the case of recursive or mutually
recursive functions. However, in some cases we can arrange to use only
constant space, i.e. O(1), instead of O(n).

If a function call is the last action in a function body, then that call is
said to be a tail call. In such situations, the frame of the caller is no longer
needed, so we can pop the caller’s frame before making the tail call. With
this approach, a recursive function that only makes tail calls will only use
O(1) stack space. Functional languages like Racket typically rely heavily
on recursive functions, so they typically guarantee that all tail calls will be
optimized in this way.

However, some care is needed with regards to argument passing in tail
calls. As mentioned above, for arguments beyond the sixth, the convention
is to use space in the caller’s frame for passing arguments. But here we’ve
popped the caller’s frame and can no longer use it. Another alternative is to
use space in the callee’s frame for passing arguments. However, this option
is also problematic because the caller and callee’s frame overlap in memory.
As we begin to copy the arguments from their sources in the caller’s frame,
the target locations in the callee’s frame might overlap with the sources for
later arguments! We solve this problem by not using the stack for parameter
passing but instead use the heap, as we describe in the Section 6.5.

As mentioned above, for a tail call we pop the caller’s frame prior to
making the tail call. The instructions for popping a frame are the instruc-
tions that we usually place in the conclusion of a function. Thus, we also
need to place such code immediately before each tail call. These instructions
include restoring the callee-saved registers, so it is good that the argument
passing registers are all caller-saved registers.

One last note regarding which instruction to use to make the tail call.
When the callee is finished, it should not return to the current function,
but it should return to the function that called the current one. Thus, the
return address that is already on the stack is the right one, and we should
not use callq to make the tail call, as that would unnecessarily overwrite
the return address. Instead we can simply use the jmp instruction. Like
the indirect function call, we write an indirect jump with a register prefixed
with an asterisk. We recommend using rax to hold the jump target because
the preceeding “conclusion” overwrites just about everything else.

6.3. SHRINK R4 99

jmp *%rax

6.3 Shrink R4

The shrink pass performs a couple minor modifications to the grammar to
ease the later passes. This pass adds an empty info field to each function
definition:

(define (f [x1 : type1 ...) : typer exp)
⇒ (define (f [x1 : type1 ...) : typer () exp)

and introduces an explicit main function.
(program info ds ... exp) ⇒ (program info ds′ mainDef)

where mainDef is
(define (main) : Integer () exp′)

6.4 Reveal Functions
Going forward, the syntax of R4 is inconvenient for purposes of compilation
because it conflates the use of function names and local variables. This is a
problem because we need to compile the use of a function name differently
than the use of a local variable; we need to use leaq to convert the function
name (a label in x86) to an address in a register. Thus, it is a good idea
to create a new pass that changes function references from just a symbol f
to (fun-ref f). A good name for this pass is reveal-functions and the
output language, F1, is defined in Figure 6.5.

Placing this pass after uniquify is a good idea, because it will make
sure that there are no local variables and functions that share the same
name. On the other hand, reveal-functions needs to come before the
explicate-control pass because that pass will help us compile fun-ref
into assignment statements.

6.5 Limit Functions
This pass transforms functions so that they have at most six parameters
and transforms all function calls so that they pass at most six arguments.
A simple strategy for imposing an argument limit of length n is to take
all arguments i where i ≥ n and pack them into a vector, making that
subsequent vector the nth argument.

100 6. FUNCTIONS

type ::= Integer | Boolean | (Vector type+) | Void | (type∗ -> type)
exp ::= int | (read) | (- exp) | (+ exp exp)

| var | (let ([var exp]) exp)
| #t | #f | (not exp) | (cmp exp exp) | (if exp exp exp)
| (vector exp+) | (vector-ref exp int)
| (vector-set! exp int exp) | (void) | (app exp exp∗)
| (fun-ref label)

def ::= (define (label [var:type]∗):type exp)
F1 ::= (program info def ∗)

Figure 6.5: The F1 language, an extension of R4 (Figure 6.1).

(f x1 . . . xn) ⇒ (f x1 . . . x5 (vector x6 . . . xn))

In the body of the function, all occurrances of the ith argument in which
i > 5 must be replaced with a vector-ref.

6.6 Remove Complex Operators and Operands

The primary decisions to make for this pass is whether to classify fun-ref
and app as either simple or complex expressions. Recall that a simple ex-
pression will eventually end up as just an “immediate” argument of an x86
instruction. Function application will be translated to a sequence of instruc-
tions, so app must be classified as complex expression. Regarding fun-ref,
as discussed above, the function label needs to be converted to an address
using the leaq instruction. Thus, even though fun-ref seems rather sim-
ple, it needs to be classified as a complex expression so that we generate an
assignment statement with a left-hand side that can serve as the target of
the leaq.

6.7 Explicate Control and the C3 language

Figure 6.6 defines the syntax for C3, the output of explicate-control.
The three mutually recursive functions for this pass, for assignment, tail,
and predicate contexts, must all be updated with cases for fun-ref and
app. In assignment and predicate contexts, app becomes call, whereas
in tail position app becomes tailcall. We recommend defining a new
function for processing function definitions. This code is similar to the case

6.8. UNCOVER LOCALS 101

arg ::= int | var | #t | #f
cmp ::= eq? | <
exp ::= arg | (read) | (- arg) | (+ arg arg) | (not arg) | (cmp arg arg)

| (allocate int type) | (vector-ref arg int)
| (vector-set! arg int arg) | (global-valuename) | (void)
| (fun-ref label) | (call arg arg∗)

stmt ::= (assign var exp) | (return exp) | (collect int)
tail ::= (return exp) | (seq stmt tail)

| (goto label) | (if (cmp arg arg) (goto label) (goto label))
| (tailcall arg arg∗)

def ::= (define (label [var:type]∗):type ((label . tail)+))
C3 ::= (program info def ∗)

Figure 6.6: The C3 language, extending C2 (Figure 5.11) with functions.

for program in R3. The top-level explicate-control function that handles
the program form of R4 can then apply this new function to all the function
definitions.

6.8 Uncover Locals

The function for processing tail should be updated with a case for tailcall.
We also recommend creating a new function for processing function defini-
tions. Each function definition in C3 has its own set of local variables, so the
code for function definitions should be similar to the case for the program
form in C2.

6.9 Select Instructions

The output of select instructions is a program in the x863 language, whose
syntax is defined in Figure 6.7.

An assignment of fun-ref becomes a leaq instruction as follows:
(assign lhs (fun-ref f)) ⇒ (leaq (fun-ref f) lhs)

Regarding function definitions, we need to remove their parameters and
instead perform parameter passing in terms of the conventions discussed
in Section 6.2. That is, the arguments will be in the argument passing

102 6. FUNCTIONS

arg ::= (int int) | (reg register) | (deref register int)
| (byte-reg register) | (global-value name)
| (fun-ref label)

cc ::= e | l | le | g | ge
instr ::= (addq arg arg) | (subq arg arg) | (negq arg) | (movq arg arg)

| (callq label) | (pushq arg) | (popq arg) | (retq)
| (xorq arg arg) | (cmpq arg arg) | (setcc arg)
| (movzbq arg arg) | (jmp label) | (jcc label) | (label label)
| (indirect-callq arg) | (tail-jmp arg)
| (leaq arg arg)

block ::= (block info instr+)
def ::= (define (label) info ((label . block)+))
x863 ::= (program info def ∗)

Figure 6.7: The x863 language (extends x862 of Figure 5.13).

registers, and inside the function we should generate a movq instruction for
each parameter, to move the argument value from the appropriate register
to a new local variable with the same name as the old parameter.

Next, consider the compilation of function calls, which have the following
form upon input to select-instructions.
(assign lhs (call fun args . . .))

In the mirror image of handling the parameters of function definitions, the
arguments args need to be moved to the argument passing registers. Once
the instructions for parameter passing have been generated, the function call
itself can be performed with an indirect function call, for which I recommend
creating the new instruction indirect-callq. Of course, the return value
from the function is stored in rax, so it needs to be moved into the lhs.
(indirect-callq fun)
(movq (reg rax) lhs)

Regarding tail calls, the parameter passing is the same as non-tail calls:
generate instructions to move the arguments into to the argument passing
registers. After that we need to pop the frame from the procedure call stack.
However, we do not yet know how big the frame is; that gets determined
during register allocation. So instead of generating those instructions here,
we invent a new instruction that means “pop the frame and then do an
indirect jump”, which we name tail-jmp.

6.10. UNCOVER LIVE 103

Recall that in Section 2.6 we recommended using the label start for the
initial block of a program, and in Section 2.8 we recommended labelling the
conclusion of the program with conclusion, so that (return arg) can be
compiled to an assignment to rax followed by a jump to conclusion. With
the addition of function definitions, we will have a starting block and con-
clusion for each function, but their labels need to be unique. We recommend
prepending the function’s name to start and conclusion, respectively, to
obtain unique labels. (Alternatively, one could gensym labels for the start
and conclusion and store them in the info field of the function definition.)

6.10 Uncover Live
Inside uncover-live, when computing the W set (written variables) for an
indirect-callq instruction, we recommend including all the caller-saved
registers, which will have the affect of making sure that no caller-saved
register actually needs to be saved.

6.11 Build Interference Graph
With the addition of function definitions, we compute an interference graph
for each function (not just one for the whole program).

Recall that in Section 5.7 we discussed the need to spill vector-typed
variables that are live during a call to the collect. With the addition of
functions to our language, we need to revisit this issue. Many functions
will perform allocation and therefore have calls to the collector inside of
them. Thus, we should not only spill a vector-typed variable when it is live
during a call to collect, but we should spill the variable if it is live during
any function call. Thus, in the build-interference pass, we recommend
adding interference edges between call-live vector-typed variables and the
callee-saved registers (in addition to the usual addition of edges between
call-live variables and the caller-saved registers).

6.12 Patch Instructions
In patch-instructions, you should deal with the x86 idiosyncrasy that the
destination argument of leaq must be a register. Additionally, you should
ensure that the argument of tail-jmp is rax, our reserved register—this
is to make code generation more convenient, because we will be trampling
many registers before the tail call (as explained below).

104 6. FUNCTIONS

6.13 Print x86
For the print-x86 pass, we recommend the following translations:
(fun-ref label) ⇒ label(%rip)
(indirect-callq arg) ⇒ callq *arg

Handling tail-jmp requires a bit more care. A straightforward translation
of tail-jmp would be jmp *arg, which is what we will want to do, but before
the jump we need to pop the current frame. So we need to restore the state of
the registers to the point they were at when the current function was called.
This sequence of instructions is the same as the code for the conclusion of a
function.

Note that your print-x86 pass needs to add the code for saving and
restoring callee-saved registers, if you have not already implemented that.
This is necessary when generating code for function definitions.

6.14 An Example Translation
Figure 6.8 shows an example translation of a simple function in R4 to
x86. The figure also includes the results of the explicate-control and
select-instructions passes. We have ommited the has-type AST nodes
for readability. Can you see any ways to improve the translation?

Exercise 20. Expand your compiler to handle R4 as outlined in this sec-
tion. Create 5 new programs that use functions, including examples that
pass functions and return functions from other functions and including re-
cursive functions. Test your compiler on these new programs and all of your
previously created test programs.

Figure 6.9 gives an overview of the passes needed for the compilation of
R4.

6.14. AN EXAMPLE TRANSLATION 105

(program
(define (add [x : Integer]

[y : Integer])
: Integer (+ x y))

(add 40 2))

⇓
(program ()
(define (add86 [x87 : Integer]

[y88 : Integer]) : Integer ()
((add86start . (return (+ x87 y88)))))

(define (main) : Integer ()
((mainstart .

(seq (assign tmp89 (fun-ref add86))
(tailcall tmp89 40 2))))))

⇒

(program ()
(define (add86)

((locals (x87 . Integer) (y88 . Integer))
(num-params . 2))

((add86start .
(block ()

(movq (reg rcx) (var x87))
(movq (reg rdx) (var y88))
(movq (var x87) (reg rax))
(addq (var y88) (reg rax))
(jmp add86conclusion)))))

(define (main)
((locals . ((tmp89 . (Integer Integer -> Integer))))
(num-params . 0))

((mainstart .
(block ()

(leaq (fun-ref add86) (var tmp89))
(movq (int 40) (reg rcx))
(movq (int 2) (reg rdx))
(tail-jmp (var tmp89))))))

⇓

_add90start:
movq %rcx, %rsi
movq %rdx, %rcx
movq %rsi, %rax
addq %rcx, %rax
jmp _add90conclusion
.globl _add90
.align 16

_add90:
pushq %rbp
movq %rsp, %rbp
pushq %r12
pushq %rbx
pushq %r13
pushq %r14
subq $0, %rsp
jmp _add90start

_add90conclusion:
addq $0, %rsp
popq %r14
popq %r13
popq %rbx
popq %r12
subq $0, %r15
popq %rbp
retq

_mainstart:
leaq _add90(%rip), %rsi
movq $40, %rcx
movq $2, %rdx
movq %rsi, %rax
addq $0, %rsp
popq %r14
popq %r13
popq %rbx
popq %r12
subq $0, %r15
popq %rbp
jmp *%rax

.globl _main

.align 16
_main:

pushq %rbp
movq %rsp, %rbp
pushq %r12
pushq %rbx
pushq %r13
pushq %r14
subq $0, %rsp
movq $16384, %rdi
movq $16, %rsi
callq _initialize
movq _rootstack_begin(%rip), %r15
jmp _mainstart

_mainconclusion:
addq $0, %rsp
popq %r14
popq %r13
popq %rbx
popq %r12
subq $0, %r15
popq %rbp
retq

Figure 6.8: Example compilation of a simple function to x86.

106 6. FUNCTIONS

R4 R4 R4

F1F1F1F1

C3C3

x86∗3 x86∗3 x86∗3

x86†3x86∗3 x86∗3

typecheck uniquify

reveal-functions

limit-functions

expose-alloc.remove-complex.

explicate-control

uncover-locals

select-instr.

uncover-live

build-inter.

allocate-reg.

patch-instr.

print-x86

Figure 6.9: Diagram of the passes for R4, a language with functions.

7

Lexically Scoped Functions

This chapter studies lexically scoped functions as they appear in functional
languages such as Racket. By lexical scoping we mean that a function’s body
may refer to variables whose binding site is outside of the function, in an
enclosing scope. Consider the example in Figure 7.1 featuring an anonymous
function defined using the lambda form. The body of the lambda, refers to
three variables: x, y, and z. The binding sites for x and y are outside of the
lambda. Variable y is bound by the enclosing let and x is a parameter of
f. The lambda is returned from the function f. Below the definition of f,
we have two calls to f with different arguments for x, first 5 then 3. The
functions returned from f are bound to variables g and h. Even though these
two functions were created by the same lambda, they are really different
functions because they use different values for x. Finally, we apply g to
11 (producing 20) and apply h to 15 (producing 22) so the result of this
program is 42.

(define (f [x : Integer]) : (Integer -> Integer)
(let ([y 4])

(lambda: ([z : Integer]) : Integer
(+ x (+ y z)))))

(let ([g (f 5)])
(let ([h (f 3)])
(+ (g 11) (h 15))))

Figure 7.1: Example of a lexically scoped function.

107

108 7. LEXICALLY SCOPED FUNCTIONS

type ::= Integer | Boolean | (Vector type+) | Void | (type∗ -> type)
exp ::= int | (read) | (- exp) | (+ exp exp) | (- exp exp)

| var | (let ([var exp]) exp)
| #t | #f | (and exp exp) | (or exp exp) | (not exp)
| (eq? exp exp) | (if exp exp exp)
| (vector exp+) | (vector-ref exp int)
| (vector-set! exp int exp) | (void)
| (exp exp∗)
| (lambda: ([var:type]∗):type exp)

def ::= (define (var [var:type]∗):type exp)
R5 ::= (program def ∗ exp)

Figure 7.2: Syntax of R5, extending R4 (Figure 6.1) with lambda.

7.1 The R5 Language
The syntax for this language with anonymous functions and lexical scoping,
R5, is defined in Figure 7.2. It adds the lambda form to the grammar for
R4, which already has syntax for function application. In this chapter we
shall descibe how to compile R5 back into R4, compiling lexically-scoped
functions into a combination of functions (as in R4) and tuples (as in R3).

To compile lexically-scoped functions to top-level function definitions,
the compiler will need to provide special treatment to variable occurences
such as x and y in the body of the lambda of Figure 7.1, for the functions of
R4 may not refer to variables defined outside the function. To identify such
variable occurences, we review the standard notion of free variable.

Definition 21. A variable is free with respect to an expression e if the
variable occurs inside e but does not have an enclosing binding in e.

For example, the variables x, y, and z are all free with respect to the
expression (+ x (+ y z)). On the other hand, only x and y are free with
respect to the following expression becuase z is bound by the lambda.

(lambda: ([z : Integer]) : Integer
(+ x (+ y z)))

Once we have identified the free variables of a lambda, we need to arrange
for some way to transport, at runtime, the values of those variables from
the point where the lambda was created to the point where the lambda is
applied. Referring again to Figure 7.1, the binding of x to 5 needs to be

7.2. INTERPRETING R5 109

5 4

x y
g

code

3 4

x y
h

Figure 7.3: Example closure representation for the lambda’s in Figure 7.1.

used in the application of g to 11, but the binding of x to 3 needs to be
used in the application of h to 15. An efficient solution to the problem, due
to Cardelli [1983], is to bundle into a vector the values of the free variables
together with the function pointer for the lambda’s code, an arrangement
called a flat closure (which we shorten to just “closure”) . Fortunately, we
have all the ingredients to make closures, Chapter 5 gave us vectors and
Chapter 6 gave us function pointers. The function pointer shall reside at
index 0 and the values for free variables will fill in the rest of the vector.
Figure 7.3 depicts the two closures created by the two calls to f in Figure 7.1.
Because the two closures came from the same lambda, they share the same
function pointer but differ in the values for the free variable x.

7.2 Interpreting R5

Figure 7.4 shows the definitional interpreter for R5. The clause for lambda
saves the current environment inside the returned lambda. Then the clause
for app uses the environment from the lambda, the lam-env, when inter-
preting the body of the lambda. The lam-env environment is extended with
the mapping of parameters to argument values.

7.3 Type Checking R5

Figure 7.5 shows how to type check the new lambda form. The body of the
lambda is checked in an environment that includes the current environment
(because it is lexically scoped) and also includes the lambda’s parameters.
We require the body’s type to match the declared return type.

110 7. LEXICALLY SCOPED FUNCTIONS

(define (interp-exp env)
(lambda (e)
(define recur (interp-exp env))
(match e
...
[‘(lambda: ([,xs : ,Ts] ...) : ,rT ,body)
‘(lambda ,xs ,body ,env)]
[‘(app ,fun ,args ...)
(define fun-val ((interp-exp env) fun))
(define arg-vals (map (interp-exp env) args))
(match fun-val
[‘(lambda (,xs ...) ,body ,lam-env)
(define new-env (append (map cons xs arg-vals) lam-env))
((interp-exp new-env) body)]
[else (error "interp-exp,␣expected␣function,␣not" fun-val)])]

[else (error ’interp-exp "unrecognized␣expression")]
)))

Figure 7.4: Interpreter for R5.

(define (typecheck-R5 env)
(lambda (e)
(match e
[‘(lambda: ([,xs : ,Ts] ...) : ,rT ,body)
(define new-env (append (map cons xs Ts) env))
(define bodyT ((typecheck-R5 new-env) body))
(cond [(equal? rT bodyT)

‘(,@Ts -> ,rT)]
[else
(error "mismatch␣in␣return␣type" bodyT rT)])]

...
)))

Figure 7.5: Type checking the lambda’s in R5.

7.4. CLOSURE CONVERSION 111

7.4 Closure Conversion

The compiling of lexically-scoped functions into top-level function defini-
tions is accomplished in the pass convert-to-closures that comes after
reveal-functions and before limit-functions.

As usual, we shall implement the pass as a recursive function over the
AST. All of the action is in the clauses for lambda and app. We transform a
lambda expression into an expression that creates a closure, that is, creates a
vector whose first element is a function pointer and the rest of the elements
are the free variables of the lambda. The name is a unique symbol generated
to identify the function.

(lambda: (ps ...) : rt body) ⇒ (vector name fvs ...)

In addition to transforming each lambda into a vector, we must create a
top-level function definition for each lambda, as shown below.

(define (name [clos : (Vector _ fvts ...)] ps ...)
(let ([fvs1 (vector-ref clos 1)])
...
(let ([fvsn (vector-ref clos n)])

body′)...))

The clos parameter refers to the closure. The ps parameters are the normal
parameters of the lambda. The types fvts are the types of the free variables
in the lambda and the underscore is a dummy type because it is rather
difficult to give a type to the function in the closure’s type, and it does not
matter. The sequence of let forms bind the free variables to their values
obtained from the closure.

We transform function application into code that retreives the function
pointer from the closure and then calls the function, passing in the closure
as the first argument. We bind e′ to a temporary variable to avoid code
duplication.

(app e es ...) ⇒ (let ([tmp e′])
(app (vector-ref tmp 0) tmp es′))

There is also the question of what to do with top-level function defini-
tions. To maintain a uniform translation of function application, we turn
function references into closures.

(fun-ref f) ⇒ (vector (fun-ref f))

The top-level function definitions need to be updated as well to take an
extra closure parameter.

112 7. LEXICALLY SCOPED FUNCTIONS

7.5 An Example Translation
Figure 7.6 shows the result of closure conversion for the example program
demonstrating lexical scoping that we discussed at the beginning of this
chapter.

(define (f [x : Integer]) : (Integer -> Integer)
(let ([y 4])

(lambda: ([z : Integer]) : Integer
(+ x (+ y z)))))

(let ([g (f 5)])
(let ([h (f 3)])
(+ (g 11) (h 15)))))

⇓
(define (f (x : Integer)) : (Integer -> Integer)
(let ((y 4))

(lambda: ((z : Integer)) : Integer
(+ x (+ y z)))))

(let ((g (app (fun-ref f) 5)))
(let ((h (app (fun-ref f) 3)))

(+ (app g 11) (app h 15)))))

⇓
(define (f (clos.1 : _) (x : Integer)) : (Integer -> Integer)

(let ((y 4))
(vector (fun-ref lam.1) x y)))

(define (lam.1 (clos.2 : _) (z : Integer)) : Integer
(let ((x (vector-ref clos.2 1)))

(let ((y (vector-ref clos.2 2)))
(+ x (+ y z)))))

(let ((g (let ((t.1 (vector (fun-ref f))))
(app (vector-ref t.1 0) t.1 5))))

(let ((h (let ((t.2 (vector (fun-ref f))))
(app (vector-ref t.2 0) t.2 3))))

(+ (let ((t.3 g)) (app (vector-ref t.3 0) t.3 11))
(let ((t.4 h)) (app (vector-ref t.4 0) t.4 15))))))

Figure 7.6: Example of closure conversion.

Figure 7.7 provides an overview of all the passes needed for the compi-
lation of R5.

7.5. AN EXAMPLE TRANSLATION 113

R4 R4 R4

F1F1F1F1F1

C3C3

x86∗3 x86∗3 x86∗3

x86†3x86∗3 x86∗3

typecheck uniquify

reveal-functions

convert-to-clos.

limit-functionsexpose-alloc.remove-complex.

explicate-control

uncover-locals

select-instr.

uncover-live

build-inter.

allocate-reg.

patch-instr.

print-x86

Figure 7.7: Diagram of the passes for R5, a language with lexically-scoped
functions.

114 7. LEXICALLY SCOPED FUNCTIONS

8

Dynamic Typing

In this chapter we discuss the compilation of a dynamically typed language,
named R7, that is a subset of the Racket language. (Recall that in the
previous chapters we have studied subsets of the Typed Racket language.) In
dynamically typed languages, an expression may produce values of differing
type. Consider the following example with a conditional expression that
may return a Boolean or an integer depending on the input to the program.

(not (if (eq? (read) 1) #f 0))

Languages that allow expressions to produce different kinds of values are
called polymorphic. There are many kinds of polymorphism, such as subtype
polymorphism and parametric polymorphism [Cardelli and Wegner, 1985].
The kind of polymorphism are talking about here does not have a special
name, but it is the usual kind that arrises in dynamically typed languages.

Another characteristic of dynamically typed languages is that primitive
operations, such as not, are often defined to operate on many different
types of values. In fact, in Racket, the not operator produces a result for
any kind of value: given #f it returns #t and given anything else it returns
#f. Furthermore, even when primitive operations restrict their inputs to
values of a certain type, this restriction is enforced at runtime instead of
during compilation. For example, the following vector reference results in a
run-time contract violation.

(vector-ref (vector 42) #t)

The syntax of R7, our subset of Racket, is defined in Figure 8.1. The
definitional interpreter for R7 is given in Figure 8.2.

Let us consider how we might compile R7 to x86, thinking about the first
example above. Our bit-level representation of the Boolean #f is zero and

115

116 8. DYNAMIC TYPING

cmp ::= eq? | < | <= | > | >=
exp ::= int | (read) | (- exp) | (+ exp exp) | (- exp exp)

| var | (let ([var exp]) exp)
| #t | #f | (and exp exp) | (or exp exp) | (not exp)
| (cmp exp exp) | (if exp exp exp)
| (vector exp+) | (vector-ref exp exp)
| (vector-set! exp exp exp) | (void)
| (exp exp∗) | (lambda (var∗) exp)
| (boolean? exp) | (integer? exp)
| (vector? exp) | (procedure? exp) | (void? exp)

def ::= (define (var var∗) exp)
R7 ::= (program def ∗ exp)

Figure 8.1: Syntax of R7, an untyped language (a subset of Racket).

similarly for the integer 0. However, (not #f) should produce #t whereas
(not 0) should produce #f. Furthermore, the behavior of not, in general,
cannot be determined at compile time, but depends on the runtime type of
its input, as in the example above that depends on the result of (read).

The way around this problem is to include information about a value’s
runtime type in the value itself, so that this information can be inspected
by operators such as not. In particular, we shall steal the 3 right-most bits
from our 64-bit values to encode the runtime type. We shall use 001 to
identify integers, 100 for Booleans, 010 for vectors, 011 for procedures, and
101 for the void value. We shall refer to these 3 bits as the tag and we define
the following auxilliary function.

tagof (Integer) = 001
tagof (Boolean) = 100

tagof ((Vector . . .)) = 010
tagof ((Vectorof . . .)) = 010

tagof ((. . . -> . . .)) = 011
tagof (Void) = 101

(We shall say more about the new Vectorof type shortly.) This stealing
of 3 bits comes at some price: our integers are reduced to ranging from
−260 to 260. The stealing does not adversely affect vectors and procedures
because those values are addresses, and our addresses are 8-byte aligned so
the rightmost 3 bits are unused, they are always 000. Thus, we do not lose

117

(define (get-tagged-type v) (match v [‘(tagged ,v1 ,ty) ty]))

(define (valid-op? op) (member op ’(+ - and or not)))

(define (interp-r7 env)
(lambda (ast)
(define recur (interp-r7 env))
(match ast
[(? symbol?) (lookup ast env)]
[(? integer?) ‘(inject ,ast Integer)]
[#t ‘(inject #t Boolean)]
[#f ‘(inject #f Boolean)]
[‘(read) ‘(inject ,(read-fixnum) Integer)]
[‘(lambda (,xs ...) ,body)
‘(inject (lambda ,xs ,body ,env) (,@(map (lambda (x) ’Any) xs) -> Any))]
[‘(define (,f ,xs ...) ,body)
(mcons f ‘(lambda ,xs ,body))]
[‘(program ,ds ... ,body)
(let ([top-level (for/list ([d ds]) ((interp-r7 ’()) d))])
(for/list ([b top-level])
(set-mcdr! b (match (mcdr b)

[‘(lambda ,xs ,body)
‘(inject (lambda ,xs ,body ,top-level)

(,@(map (lambda (x) ’Any) xs) -> Any))])))
((interp-r7 top-level) body))]

[‘(vector ,(app recur elts) ...)
(define tys (map get-tagged-type elts))
‘(inject ,(apply vector elts) (Vector ,@tys))]
[‘(vector-set! ,(app recur v1) ,n ,(app recur v2))

(match v1
[‘(inject ,vec ,ty)
(vector-set! vec n v2)
‘(inject (void) Void)])]

[‘(vector-ref ,(app recur v) ,n)
(match v [‘(inject ,vec ,ty) (vector-ref vec n)])]
[‘(let ([,x ,(app recur v)]) ,body)
((interp-r7 (cons (cons x v) env)) body)]
[‘(,op ,es ...) #:when (valid-op? op)
(interp-r7-op op (for/list ([e es]) (recur e)))]
[‘(eq? ,(app recur l) ,(app recur r))
‘(inject ,(equal? l r) Boolean)]
[‘(if ,(app recur q) ,t ,f)
(match q
[‘(inject #f Boolean) (recur f)]
[else (recur t)])]

[‘(,(app recur f-val) ,(app recur vs) ...)
(match f-val
[‘(inject (lambda (,xs ...) ,body ,lam-env) ,ty)
(define new-env (append (map cons xs vs) lam-env))
((interp-r7 new-env) body)]
[else (error "interp-r7,␣expected␣function,␣not" f-val)])])))

Figure 8.2: Interpreter for the R7 language. UPDATE ME -Jeremy

118 8. DYNAMIC TYPING

information by overwriting the rightmost 3 bits with the tag and we can
simply zero-out the tag to recover the original address.

In some sense, these tagged values are a new kind of value. Indeed, we
can extend our typed language with tagged values by adding a new type to
classify them, called Any, and with operations for creating and using tagged
values, yielding the R6 language that we define in Section 8.1. The R6
language provides the fundamental support for polymorphism and runtime
types that we need to support dynamic typing.

There is an interesting interaction between tagged values and garbage
collection. A variable of type Any might refer to a vector and therefore
it might be a root that needs to be inspected and copied during garbage
collection. Thus, we need to treat variables of type Any in a similar way to
variables of type Vector for purposes of register allocation, which we discuss
in Section 8.4. One concern is that, if a variable of type Any is spilled, it
must be spilled to the root stack. But this means that the garbage collector
needs to be able to differentiate between (1) plain old pointers to tuples,
(2) a tagged value that points to a tuple, and (3) a tagged value that is
not a tuple. We enable this differentiation by choosing not to use the tag
000. Instead, that bit pattern is reserved for identifying plain old pointers to
tuples. On the other hand, if one of the first three bits is set, then we have
a tagged value, and inspecting the tag can differentiation between vectors
(010) and the other kinds of values.

We shall implement our untyped language R7 by compiling it to R6
(Section 8.5), but first we describe the how to extend our compiler to handle
the new features of R6 (Sections 8.2, 8.3, and 8.4).

8.1 The R6 Language: Typed Racket + Any

The syntax of R6 is defined in Figure 8.3. The (inject e T) form converts
the value produced by expression e of type T into a tagged value. The
(project e T) form converts the tagged value produced by expression e into
a value of type T or else halts the program if the type tag is equivalent to
T . We treat (Vectorof Any) as equivalent to (Vector Any . . .).

Note that in both inject and project, the type T is restricted to the flat
types ftype, which simplifies the implementation and corresponds with what
is needed for compiling untyped Racket. The type predicates, (boolean? e)
etc., expect a tagged value and return #t if the tag corresponds to the
predicate, and return #t otherwise. Selections from the type checker for R6
are shown in Figure 8.4 and the interpreter for R6 is in Figure 8.5.

8.1. THE R6 LANGUAGE: TYPED RACKET + ANY 119

type ::= Integer | Boolean | (Vector type+) | (Vectorof type) | Void
| (type∗ -> type) | Any

ftype ::= Integer | Boolean | Void | (Vectorof Any) | (Vector Any∗)
| (Any∗ -> Any)

cmp ::= eq? | < | <= | > | >=
exp ::= int | (read) | (- exp) | (+ exp exp) | (- exp exp)

| var | (let ([var exp]) exp)
| #t | #f | (and exp exp) | (or exp exp) | (not exp)
| (cmp exp exp) | (if exp exp exp)
| (vector exp+) | (vector-ref exp int)
| (vector-set! exp int exp) | (void)
| (exp exp∗) | (lambda: ([var:type]∗):type exp)
| (inject exp ftype) | (project exp ftype)
| (boolean? exp) | (integer? exp)
| (vector? exp) | (procedure? exp) | (void? exp)

def ::= (define (var [var:type]∗):type exp)
R6 ::= (program def ∗ exp)

Figure 8.3: Syntax of R6, extending R5 (Figure 7.2) with Any.

120 8. DYNAMIC TYPING

(define (flat-ty? ty) ...)

(define (typecheck-R6 env)
(lambda (e)
(define recur (typecheck-R6 env))
(match e

[‘(inject ,e ,ty)
(unless (flat-ty? ty)
(error "may␣only␣inject␣a␣value␣of␣flat␣type,␣not␣~a" ty))

(define-values (new-e e-ty) (recur e))
(cond
[(equal? e-ty ty)
(values ‘(inject ,new-e ,ty) ’Any)]
[else
(error "inject␣expected␣~a␣to␣have␣type␣~a" e ty)])]

[‘(project ,e ,ty)
(unless (flat-ty? ty)
(error "may␣only␣project␣to␣a␣flat␣type,␣not␣~a" ty))

(define-values (new-e e-ty) (recur e))
(cond
[(equal? e-ty ’Any)
(values ‘(project ,new-e ,ty) ty)]
[else
(error "project␣expected␣~a␣to␣have␣type␣Any" e)])]

[‘(vector-ref ,e ,i)
(define-values (new-e e-ty) (recur e))
(match e-ty
[‘(Vector ,ts ...) ...]
[‘(Vectorof ,ty)
(unless (exact-nonnegative-integer? i)
(error ’type-check "invalid␣index␣~a" i))

(values ‘(vector-ref ,new-e ,i) ty)]
[else (error "expected␣a␣vector␣in␣vector-ref,␣not" e-ty)])]

...
)))

Figure 8.4: Type checker for parts of the R6 language.

8.1. THE R6 LANGUAGE: TYPED RACKET + ANY 121

(define primitives (set ’boolean? ...))

(define (interp-op op)
(match op

[’boolean? (lambda (v)
(match v

[‘(tagged ,v1 Boolean) #t]
[else #f]))]

...))

;; Equavalence of flat types
(define (tyeq? t1 t2)
(match ‘(,t1 ,t2)
[‘((Vectorof Any) (Vector ,t2s ...))
(for/and ([t2 t2s]) (eq? t2 ’Any))]
[‘((Vector ,t1s ...) (Vectorof Any))
(for/and ([t1 t1s]) (eq? t1 ’Any))]
[else (equal? t1 t2)]))

(define (interp-R6 env)
(lambda (ast)
(match ast

[‘(inject ,e ,t)
‘(tagged ,((interp-R6 env) e) ,t)]
[‘(project ,e ,t2)
(define v ((interp-R6 env) e))
(match v

[‘(tagged ,v1 ,t1)
(cond [(tyeq? t1 t2)

v1]
[else
(error "in␣project,␣type␣mismatch" t1 t2)])]

[else
(error "in␣project,␣expected␣tagged␣value" v)])]

...)))

Figure 8.5: Interpreter for R6.

122 8. DYNAMIC TYPING

8.2 Shrinking R6

In the shrink pass we recommend compiling project into an explicit if
expression that uses three new operations: tag-of-any, value-of-any, and
exit. The tag-of-any operation retrieves the type tag from a tagged value
of type Any. The value-of-any retrieves the underlying value from a tagged
value. Finally, the exit operation ends the execution of the program by in-
voking the operating system’s exit function. So the translation for project
is as follows. (We have ommitted the has-type AST nodes to make this
output more readable.)

(project e type) ⇒
(let ([tmp e′])
(if (eq? (tag-of-any tmp) tag)

(value-of-any tmp)
(exit)))

Similarly, we recommend translating the type predicates (boolean?, etc.)
into uses of tag-of-any and eq?.

8.3 Instruction Selection for R6

Inject We recommend compiling an inject as follows if the type is Integer
or Boolean. The salq instruction shifts the destination to the left by the
number of bits specified its source argument (in this case 3, the length of
the tag) and it preserves the sign of the integer. We use the orq instruction
to combine the tag and the value to form the tagged value.

(assign lhs (inject e T)) ⇒
(movq e′ lhs’)
(salq (int 3) lhs’)
(orq (int tagof (T)) lhs’)

The instruction selection for vectors and procedures is different because their
is no need to shift them to the left. The rightmost 3 bits are already zeros
as described above. So we just combine the value and the tag using orq.

(assign lhs (inject e T)) ⇒ (movq e′ lhs’)
(orq (int tagof (T)) lhs’)

Tag of Any Recall that the tag-of-any operation extracts the type tag
from a value of type Any. The type tag is the bottom three bits, so we obtain
the tag by taking the bitwise-and of the value with 111 (7 in decimal).

8.4. REGISTER ALLOCATION FOR R6 123

(assign lhs (tag-of-any e)) ⇒ (movq e′ lhs’)
(andq (int 7) lhs’)

Value of Any Like inject, the instructions for value-of-any are differ-
ent depending on whether the type T is a pointer (vector or procedure) or
not (Integer or Boolean). The following shows the instruction selection for
Integer and Boolean. We produce an untagged value by shifting it to the
right by 3 bits.

(assign lhs (project e T)) ⇒ (movq e′ lhs’)
(sarq (int 3) lhs’)

In the case for vectors and procedures, there is no need to shift. Instead we
just need to zero-out the rightmost 3 bits. We accomplish this by creating
the bit pattern . . . 0111 (7 in decimal) and apply bitwise-not to obtain
. . . 1000 which we movq into the destination lhs. We then generate andq
with the tagged value to get the desired result.

(assign lhs (project e T)) ⇒ (movq (int . . . 1000) lhs’)
(andq e′ lhs’)

8.4 Register Allocation for R6

As mentioned above, a variable of type Any might refer to a vector. Thus,
the register allocator for R6 needs to treat variable of type Any in the same
way that it treats variables of type Vector for purposes of garbage collection.
In particular,

• If a variable of type Any is live during a function call, then it must be
spilled. One way to accomplish this is to augment the pass build-interference
to mark all variables that are live after a callq as interfering with all
the registers.

• If avariable of type Any is spilled, it must be spilled to the root stack
instead of the normal procedure call stack.

8.5 Compiling R7 to R6

Figure 8.6 shows the compilation of many of the R7 forms into R6. An
important invariant of this pass is that given a subexpression e of R7, the
pass will produce an expression e′ of R6 that has type Any. For example,

124 8. DYNAMIC TYPING

#t ⇒ (inject #t Boolean)

(+ e1 e2) ⇒
(inject

(+ (project e′1 Integer)
(project e′2 Integer))

Integer)

(lambda (x1 . . .) e) ⇒ (inject (lambda: ([x1:Any]. . .):Any e′)
(Any. . .Any -> Any))

(app e0 e1 . . . en) ⇒ (app (project e′0 (Any. . .Any -> Any))
e′1 . . . e′n)

(vector-ref e1 e2) ⇒
(let ([tmp1 (project e′1 (Vectorof Any))])
(let ([tmp2 (project e′2 Integer)])

(vector-ref tmp1 tmp2)))

(if e1 e2 e3) ⇒
(if (eq? e′1 (inject #f Boolean))

e′3
e′2)

(eq? e1 e2) ⇒ (inject (eq? e′1 e′2) Boolean)

Figure 8.6: Compiling R7 to R6.

the first row in Figure 8.6 shows the compilation of the Boolean #t, which
must be injected to produce an expression of type Any. The second row of
Figure 8.6, the compilation of addition, is representative of compilation for
many operations: the arguments have type Any and must be projected to
Integer before the addition can be performed.

The compilation of lambda (third row of Figure 8.6) shows what hap-
pens when we need to produce type annotations: we simply use Any. The
compilation of if and eq? demonstrate how this pass has to account for
some differences in behavior between R7 and R6. The R7 language is more
permissive than R6 regarding what kind of values can be used in various
places. For example, the condition of an if does not have to be a Boolean.
For eq?, the arguments need not be of the same type (but in that case, the
result will be #f).

9

Gradual Typing

This chapter will be based on the ideas of Siek and Taha [2006].

125

126 9. GRADUAL TYPING

10

Parametric Polymorphism

This chapter may be based on ideas from Cardelli [1984], Leroy [1992], Shao
[1997], or Harper and Morrisett [1995].

127

128 10. PARAMETRIC POLYMORPHISM

11

High-level Optimization

This chapter will present a procedure inlining pass based on the algorithm
of Waddell and Dybvig [1997].

129

130 11. HIGH-LEVEL OPTIMIZATION

12

Appendix

12.1 Interpreters

We provide several interpreters in the interp.rkt file. The interp-scheme
function takes an AST in one of the Racket-like languages considered in this
book (R1, R2, . . .) and interprets the program, returning the result value.
The interp-C function interprets an AST for a program in one of the C-like
languages (C0, C1, . . .), and the interp-x86 function interprets an AST for
an x86 program.

12.2 Utility Functions

The utility function described in this section can be found in the utilities.rkt
file.

The read-program function takes a file path and parses that file (it must
be a Racket program) into an abstract syntax tree (as an S-expression) with
a program AST at the top.

The assert function displays the error message msg if the Boolean bool
is false.
(define (assert msg bool) ...)

The lookup function takes a key and an association list (a list of key-
value pairs), and returns the first value that is associated with the given
key, if there is one. If not, an error is triggered. The association list may
contain both immutable pairs (built with cons) and mutable mapirs (built
with mcons).

The map2 function ...

131

132 12. APPENDIX

12.2.1 Testing

The interp-tests function takes a compiler name (a string), a description
of the passes, an interpreter for the source language, a test family name
(a string), and a list of test numbers, and runs the compiler passes and
the interpreters to check whether the passes correct. The description of
the passes is a list with one entry per pass. An entry is a list with three
things: a string giving the name of the pass, the function that implements
the pass (a translator from AST to AST), and a function that implements
the interpreter (a function from AST to result value) for the language of
the output of the pass. The interpreters from Appendix 12.1 make a good
choice. The interp-tests function assumes that the subdirectory tests
has a bunch of Scheme programs whose names all start with the family
name, followed by an underscore and then the test number, ending in .scm.
Also, for each Scheme program there is a file with the same number except
that it ends with .in that provides the input for the Scheme program.

(define (interp-tests name passes test-family test-nums) ...

The compiler-tests function takes a compiler name (a string) a descrip-
tion of the passes (see the comment for interp-tests) a test family name
(a string), and a list of test numbers (see the comment for interp-tests), and
runs the compiler to generate x86 (a .s file) and then runs gcc to generate
machine code. It runs the machine code and checks that the output is 42.

(define (compiler-tests name passes test-family test-nums) ...)

The compile-file function takes a description of the compiler passes (see
the comment for interp-tests) and returns a function that, given a pro-
gram file name (a string ending in .scm), applies all of the passes and writes
the output to a file whose name is the same as the program file name but
with .scm replaced with .s.

(define (compile-file passes)
(lambda (prog-file-name) ...))

12.3 x86 Instruction Set Quick-Reference

Table 12.1 lists some x86 instructions and what they do. We write A → B
to mean that the value of A is written into location B. Address offsets are
given in bytes. The instruction arguments A, B, C can be immediate con-
stants (such as $4), registers (such as %rax), or memory references (such as

12.3. X86 INSTRUCTION SET QUICK-REFERENCE 133

−4(%ebp)). Most x86 instructions only allow at most one memory reference
per instruction. Other operands must be immediates or registers.

134 12. APPENDIX

Instruction Operation
addq A, B A + B → B
negq A −A→ A
subq A, B B −A→ B
callq L Pushes the return address and jumps to label L
callq *A Calls the function at the address A.
retq Pops the return address and jumps to it
popq A ∗rsp→ A; rsp + 8→ rsp
pushq A rsp− 8→ rsp; A→ ∗rsp
leaq A,B A→ B (C must be a register)
cmpq A, B compare A and B and set the flag register
je L Jump to label L if the flag register matches the

condition code of the instruction, otherwise go to the
next instructions. The condition codes are e for
“equal”, l for “less”, le for “less or equal”, g for
“greater”, and ge for “greater or equal”.

jl L
jle L
jg L
jge L
jmp L Jump to label L
movq A, B A→ B
movzbq A, B A→ B, where A is a single-byte register (e.g., al or

cl), B is a 8-byte register, and the extra bytes of B are
set to zero.

notq A ∼ A→ A (bitwise complement)
orq A, B A|B → B (bitwise-or)
andq A, B A&B → B (bitwise-and)
salq A, B B « A→ B (arithmetic shift left, where A is a constant)
sarq A, B B » A→ B (arithmetic shift right, where A is a constant)
sete A If the flag matches the condition code, then 1→ A, else

0→ A. Refer to je above for the description of the
condition codes. A must be a single byte register (e.g.,
al or cl).

setl A
setle A
setg A
setge A

Table 12.1: Quick-reference for the x86 instructions used in this book.

Bibliography

Harold Abelson and Gerald J. Sussman. Structure and Interpretation of
Computer Programs. MIT Press, Cambridge, MA, USA, 2nd edition,
1996. ISBN 0262011530.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: principles,
techniques, and tools. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1986. ISBN 0-201-10088-6.

Hussein Al-Omari and Khair Eddin Sabri. New graph coloring algorithms.
Journal of Mathematics and Statistics, 2(4), 2006.

Frances E. Allen. Control flow analysis. In Proceedings of a symposium on
Compiler optimization, pages 1–19, 1970.

AndrewW. Appel. Runtime tags aren’t necessary. LISP and Symbolic Com-
putation, 2(2):153–162, 1989. ISSN 0892-4635. doi: 10.1007/BF01811537.
URL http://dx.doi.org/10.1007/BF01811537.

J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, A. J. Perlis,
H. Rutishauser, K. Samelson, B. Vauquois, J. H. Wegstein, A. van Wijn-
gaarden, and M. Woodger. Report on the algorithmic language algol 60.
Commun. ACM, 3(5):299–314, May 1960. ISSN 0001-0782. doi: 10.1145/
367236.367262. URL http://doi.acm.org/10.1145/367236.367262.

J. Baker, A. Cunei, T. Kalibera, F. Pizlo, and J. Vitek. Accurate garbage
collection in uncooperative environments revisited. Concurr. Comput.
: Pract. Exper., 21(12):1572–1606, August 2009. ISSN 1532-0626. doi:
10.1002/cpe.v21:12. URL http://dx.doi.org/10.1002/cpe.v21:12.

V. K. Balakrishnan. Introductory Discrete Mathematics. Dover Publications,
Incorporated, 1996. ISBN 0486691152.

135

http://dx.doi.org/10.1007/BF01811537
http://doi.acm.org/10.1145/367236.367262
http://dx.doi.org/10.1002/cpe.v21:12

136 BIBLIOGRAPHY

Stephen M. Blackburn, Perry Cheng, and Kathryn S. McKinley. Myths
and realities: The performance impact of garbage collection. In Pro-
ceedings of the Joint International Conference on Measurement and Mod-
eling of Computer Systems, SIGMETRICS ’04/Performance ’04, pages
25–36, New York, NY, USA, 2004. ACM. ISBN 1-58113-873-3. doi: 10.
1145/1005686.1005693. URL http://doi.acm.org/10.1145/1005686.
1005693.

Daniel Brélaz. New methods to color the vertices of a graph. Commun.
ACM, 22(4):251–256, 1979. ISSN 0001-0782.

Randal E. Bryant and David R. O’Hallaron. x86-64 Machine-Level Pro-
gramming. Carnegie Mellon University, September 2005.

Randal E. Bryant and David R. O’Hallaron. Computer Systems: A Pro-
grammer’s Perspective. Addison-Wesley Publishing Company, USA, 2nd
edition, 2010. ISBN 0136108040, 9780136108047.

Luca Cardelli. The functional abstract machine. Technical Report TR-107,
AT&T Bell Laboratories, 1983.

Luca Cardelli. Compiling a functional language. In ACM Symposium on
LISP and Functional Programming, LFP ’84, pages 208–217. ACM, 1984.

Luca Cardelli and Peter Wegner. On understanding types, data abstraction,
and polymorphism. ACM Comput. Surv., 17(4):471–523, 1985. ISSN
0360-0300.

C. J. Cheney. A nonrecursive list compacting algoirthm. Communications
of the ACM, 13(11), 1970.

Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leis-
erson. Introduction to Algorithms. McGraw-Hill Higher Education, 2001.
ISBN 0070131511.

Cody Cutler and Robert Morris. Reducing pause times with clustered col-
lection. In Proceedings of the 2015 International Symposium on Mem-
ory Management, ISMM ’15, pages 131–142, New York, NY, USA, 2015.
ACM. ISBN 978-1-4503-3589-8. doi: 10.1145/2754169.2754184. URL
http://doi.acm.org/10.1145/2754169.2754184.

Olivier Danvy. Three steps for the CPS transformation. Technical Report
CIS-92-02, Kansas State University, December 1991.

http://doi.acm.org/10.1145/1005686.1005693
http://doi.acm.org/10.1145/1005686.1005693
http://doi.acm.org/10.1145/2754169.2754184

BIBLIOGRAPHY 137

David Detlefs, Christine Flood, Steve Heller, and Tony Printezis. Garbage-
first garbage collection. In Proceedings of the 4th International Symposium
on Memory Management, ISMM ’04, pages 37–48, New York, NY, USA,
2004. ACM. ISBN 1-58113-945-4. doi: 10.1145/1029873.1029879. URL
http://doi.acm.org/10.1145/1029873.1029879.

E. W. Dijkstra. Why numbering should start at zero. Technical Report
EWD831, University of Texas at Austin, 1982.

Amer Diwan, Eliot Moss, and Richard Hudson. Compiler support for
garbage collection in a statically typed language. In Proceedings of
the ACM SIGPLAN 1992 Conference on Programming Language Design
and Implementation, PLDI ’92, pages 273–282, New York, NY, USA,
1992. ACM. ISBN 0-89791-475-9. doi: 10.1145/143095.143140. URL
http://doi.acm.org/10.1145/143095.143140.

R. Kent Dybvig. The SCHEME Programming Language. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1987. ISBN 0-13-791864-X.

R. Kent Dybvig. The development of chez scheme. In Proceedings of the
Eleventh ACM SIGPLAN International Conference on Functional Pro-
gramming, ICFP ’06, pages 1–12, New York, NY, USA, 2006. ACM. ISBN
1-59593-309-3. doi: 10.1145/1159803.1159805. URL http://doi.acm.
org/10.1145/1159803.1159805.

R. Kent Dybvig and Andrew Keep. P523 compiler assignments. Technical
report, Indiana University, 2010.

Matthias Felleisen and Daniel P. Friedman. Control operators, the SECD-
machine and the lambda-calculus. pages 193–217, 1986.

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Kr-
ishnamurthi. How to Design Programs: An Introduction to Programming
and Computing. MIT Press, Cambridge, MA, USA, 2001. ISBN 0-262-
06218-6.

Matthias Felleisen, M.D. Barski Conrad, David Van Horn, and Eight Stu-
dents of Northeastern University. Realm of Racket: Learn to Program,
One Game at a Time! No Starch Press, San Francisco, CA, USA, 2013.
ISBN 1593274912, 9781593274917.

Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The
essence of compiling with continuations. In Conference on Programming
Language Design and Implementation, PLDI, pages 502–514, June 1993.

http://doi.acm.org/10.1145/1029873.1029879
http://doi.acm.org/10.1145/143095.143140
http://doi.acm.org/10.1145/1159803.1159805
http://doi.acm.org/10.1145/1159803.1159805

138 BIBLIOGRAPHY

Matthew Flatt and PLT. The Racket reference 6.0. Technical report, PLT
Inc., 2014. http://docs.racket-lang.org/reference/index.html.

Matthew Flatt, Robert Bruce Findler, and PLT. The racket guide. Technical
Report 6.0, PLT Inc., 2014.

Daniel P. Friedman and Matthias Felleisen. The Little Schemer (4th Ed.).
MIT Press, Cambridge, MA, USA, 1996. ISBN 0-262-56099-2.

Daniel P. Friedman and David S. Wise. Cons should not evaluate its argu-
ments. Technical Report TR44, Indiana University, 1976.

Assefaw Hadish Gebremedhin. Parallel Graph Coloring. PhD thesis, Uni-
versity of Bergen, 1999.

Abdulaziz Ghuloum. An incremental approach to compiler construction. In
Scheme and Functional Programming Workshop, 2006.

Benjamin Goldberg. Tag-free garbage collection for strongly typed pro-
gramming languages. In Proceedings of the ACM SIGPLAN 1991 Confer-
ence on Programming Language Design and Implementation, PLDI ’91,
pages 165–176, New York, NY, USA, 1991. ACM. ISBN 0-89791-428-
7. doi: 10.1145/113445.113460. URL http://doi.acm.org/10.1145/
113445.113460.

Robert Harper and Greg Morrisett. Compiling polymorphism using in-
tensional type analysis. In POPL ’95: Proceedings of the 22nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 130–141. ACM Press, 1995. ISBN 0-89791-692-1.

Fergus Henderson. Accurate garbage collection in an uncooperative envi-
ronment. In Proceedings of the 3rd International Symposium on Mem-
ory Management, ISMM ’02, pages 150–156, New York, NY, USA,
2002. ACM. ISBN 1-58113-539-4. doi: 10.1145/512429.512449. URL
http://doi.acm.org/10.1145/512429.512449.

Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual Com-
bined Volumes: 1, 2A, 2B, 2C, 3A, 3B, 3C and 3D, December 2015.

Richard Jones and Rafael Lins. Garbage Collection: Algorithms for Auto-
matic Dynamic Memory Management. John Wiley & Sons, Inc., New
York, NY, USA, 1996. ISBN 0-471-94148-4.

http://docs.racket-lang.org/reference/index.html
http://doi.acm.org/10.1145/113445.113460
http://doi.acm.org/10.1145/113445.113460
http://doi.acm.org/10.1145/512429.512449

BIBLIOGRAPHY 139

Richard Jones, Antony Hosking, and Eliot Moss. The Garbage Collection
Handbook: The Art of Automatic Memory Management. Chapman &
Hall/CRC, 1st edition, 2011. ISBN 1420082795, 9781420082791.

Andrew W. Keep. A Nanopass Framework for Commercial Compiler De-
velopment. PhD thesis, Indiana University, December 2012.

R. Kelsey, W. Clinger, and J. Rees (eds.). Revised5 report on the algorithmic
language scheme. Higher-Order and Symbolic Computation, 11(1), August
1998.

Brian W. Kernighan and Dennis M. Ritchie. The C programming language.
Prentice Hall Press, Upper Saddle River, NJ, USA, 1988. ISBN 0-13-
110362-8.

Donald E. Knuth. Backus normal form vs. backus naur form. Commun.
ACM, 7(12):735–736, December 1964. ISSN 0001-0782. doi: 10.1145/
355588.365140. URL http://doi.acm.org/10.1145/355588.365140.

Eugene Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and Bruce
Duba. Hygienic macro expansion. In LFP ’86: Proceedings of the 1986
ACM conference on LISP and functional programming, pages 151–161,
New York, NY, USA, 1986. ACM. ISBN 0-89791-200-4.

Xavier Leroy. Unboxed objects and polymorphic typing. In POPL ’92: Pro-
ceedings of the 19th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 177–188, New York, NY, USA, 1992.
ACM Press. ISBN 0-89791-453-8.

Henry Lieberman and Carl Hewitt. A real-time garbage collector based on
the lifetimes of objects. Commun. ACM, 26(6):419–429, June 1983. ISSN
0001-0782. doi: 10.1145/358141.358147. URL http://doi.acm.org/10.
1145/358141.358147.

Michael Matz, Jan Hubicka, Andreas Jaeger, and Mark Mitchell. System V
Application Binary Interface, AMD64 Architecture Processor Supplement,
October 2013.

John McCarthy. Recursive functions of symbolic expressions and their com-
putation by machine, part i. Commun. ACM, 3(4):184–195, 1960. ISSN
0001-0782.

E.F. Moore. The shortest path through a maze. In Proceedings of an Inter-
national Symposium on the Theory of Switching, April 1959.

http://doi.acm.org/10.1145/355588.365140
http://doi.acm.org/10.1145/358141.358147
http://doi.acm.org/10.1145/358141.358147

140 BIBLIOGRAPHY

Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

John C. Reynolds. Definitional interpreters for higher-order programming
languages. In ACM ’72: Proceedings of the ACM Annual Conference,
pages 717–740. ACM Press, 1972.

Kenneth H. Rosen. Discrete Mathematics and Its Applications. McGraw-Hill
Higher Education, 2002. ISBN 0072474777.

Dipanwita Sarkar, Oscar Waddell, and R. Kent Dybvig. A nanopass in-
frastructure for compiler education. In ICFP ’04: Proceedings of the
ninth ACM SIGPLAN international conference on Functional program-
ming, pages 201–212. ACM Press, 2004. ISBN 1-58113-905-5.

Rifat Shahriyar, Stephen M. Blackburn, Xi Yang, and Kathryn M. McKin-
ley. Taking off the gloves with reference counting immix. In OOPSLA
’13: Proceeding of the 24th ACM SIGPLAN conference on Object ori-
ented programming systems languages and applications, oct 2013. doi:
http://dx.doi.org/10.1145/2509136.2509527.

Zhong Shao. Flexible representation analysis. In ICFP ’97: Proceedings
of the 2nd ACM SIGPLAN international conference on Functional pro-
gramming, pages 85–98, New York, NY, USA, 1997. ACM Press. ISBN
0-89791-918-1.

Jonathan Shidal, Ari J. Spilo, Paul T. Scheid, Ron K. Cytron, and Kr-
ishna M. Kavi. Recycling trash in cache. In Proceedings of the 2015
International Symposium on Memory Management, ISMM ’15, pages
118–130, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3589-
8. doi: 10.1145/2754169.2754183. URL http://doi.acm.org/10.1145/
2754169.2754183.

Fridtjof Siebert. Compiler Construction: 10th International Conference, CC
2001 Held as Part of the Joint European Conferences on Theory and Prac-
tice of Software, ETAPS 2001 Genova, Italy, April 2–6, 2001 Proceedings,
chapter Constant-Time Root Scanning for Deterministic Garbage Col-
lection, pages 304–318. Springer Berlin Heidelberg, Berlin, Heidelberg,
2001. ISBN 978-3-540-45306-2. doi: 10.1007/3-540-45306-7_21. URL
http://dx.doi.org/10.1007/3-540-45306-7_21.

Jeremy G. Siek and Bor-Yuh Evan Chang. A problem course in compilation:
From python to x86 assembly. Technical report, Univesity of Colorado,
2012.

http://doi.acm.org/10.1145/2754169.2754183
http://doi.acm.org/10.1145/2754169.2754183
http://dx.doi.org/10.1007/3-540-45306-7_21

BIBLIOGRAPHY 141

Jeremy G. Siek and Walid Taha. Gradual typing for functional languages. In
Scheme and Functional Programming Workshop, pages 81–92, September
2006.

Michael Sperber, R. KENT DYBVIG, MATTHEW FLATT, ANTON
VAN STRAATEN, ROBBY FINDLER, and JACOB MATTHEWS.
Revised6 report on the algorithmic language scheme. Journal of Func-
tional Programming, 19:1–301, 8 2009. ISSN 1469-7653. doi: 10.1017/
S0956796809990074. URL http://journals.cambridge.org/article_
S0956796809990074.

Guy L. Steele, Jr. Data representations in pdp-10 maclisp. AI Memo 420,
MIT Artificial Intelligence Lab, September 1977.

Gerald Jay Sussman and Guy L. Steele Jr. Scheme: an interpreter for
extended lambda calculus. Technical Report AI Memo No. 349, MIT,
December 1975.

Gil Tene, Balaji Iyengar, and Michael Wolf. C4: the continuously concurrent
compacting collector. In Proceedings of the international symposium on
Memory management, ISMM ’11, pages 79–88, New York, NY, USA, 2011.
ACM. doi: http://doi.acm.org/10.1145/1993478.1993491.

David Ungar. Generation scavenging: A non-disruptive high performance
storage reclamation algorithm. In Proceedings of the First ACM SIG-
SOFT/SIGPLAN Software Engineering Symposium on Practical Software
Development Environments, SDE 1, pages 157–167, New York, NY, USA,
1984. ACM. ISBN 0-89791-131-8. doi: 10.1145/800020.808261. URL
http://doi.acm.org/10.1145/800020.808261.

Oscar Waddell and R. Kent Dybvig. Fast and effective procedure inlining. In
Proceedings of the 4th International Symposium on Static Analysis, SAS
’97, pages 35–52, London, UK, 1997. Springer-Verlag.

Paul Wilson. Uniprocessor garbage collection techniques. In Yves
Bekkers and Jacques Cohen, editors, Memory Management, volume
637 of Lecture Notes in Computer Science, pages 1–42. Springer Berlin
/ Heidelberg, 1992. URL http://dx.doi.org/10.1007/BFb0017182.
10.1007/BFb0017182.

http://journals.cambridge.org/article_S0956796809990074
http://journals.cambridge.org/article_S0956796809990074
http://doi.acm.org/10.1145/800020.808261
http://dx.doi.org/10.1007/BFb0017182

	Preliminaries
	Abstract Syntax Trees and S-expressions
	Grammars
	Pattern Matching
	Recursion
	Interpreters
	Example Compiler: a Partial Evaluator

	Integers and Variables
	The R1 Language
	The x86 Assembly Language
	Planning the trip to x86 via the C0 language
	The C0 Intermediate Language
	The dialects of x86

	Uniquify Variables
	Remove Complex Operators and Operands
	Explicate Control
	Uncover Locals
	Select Instructions
	Assign Homes
	Patch Instructions
	Print x86

	Register Allocation
	Registers and Calling Conventions
	Liveness Analysis
	Building the Interference Graph
	Graph Coloring via Sudoku
	Print x86 and Conventions for Registers
	Challenge: Move Biasing*

	Booleans and Control Flow
	The R2 Language
	Type Checking R2 Programs
	Shrink the R2 Language
	XOR, Comparisons, and Control Flow in x86
	The C1 Intermediate Language
	Explicate Control
	Select Instructions
	Register Allocation
	Liveness Analysis
	Build Interference

	Patch Instructions
	An Example Translation
	Challenge: Optimize Jumps*

	Tuples and Garbage Collection
	The R3 Language
	Garbage Collection
	Graph Copying via Cheney's Algorithm
	Data Representation
	Implementation of the Garbage Collector

	Expose Allocation
	Explicate Control and the C2 language
	Uncover Locals
	Select Instructions
	Register Allocation
	Print x86

	Functions
	The R4 Language
	Functions in x86
	Calling Conventions
	Efficient Tail Calls

	Shrink R4
	Reveal Functions
	Limit Functions
	Remove Complex Operators and Operands
	Explicate Control and the C3 language
	Uncover Locals
	Select Instructions
	Uncover Live
	Build Interference Graph
	Patch Instructions
	Print x86
	An Example Translation

	Lexically Scoped Functions
	The R5 Language
	Interpreting R5
	Type Checking R5
	Closure Conversion
	An Example Translation

	Dynamic Typing
	The R6 Language: Typed Racket + Any
	Shrinking R6
	Instruction Selection for R6
	Register Allocation for R6
	Compiling R7 to R6

	Gradual Typing
	Parametric Polymorphism
	High-level Optimization
	Appendix
	Interpreters
	Utility Functions
	Testing

	x86 Instruction Set Quick-Reference

