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Abstract. Programming by demonstration enables users to easily personalize their applications, automating
repetitive tasks simply by executing a few examples. We formalize programming by demonstration as a machine
learning problem: given the changes in the application state that result from the user’s demonstrated actions, learn
the general program that maps from one application state to the next. We present a methodology for learning in this
space of complex functions. First we extend version spaces to learn arbitrary functions, not just concepts. Then we
introduce the version space algebra, a method for composing simpler version spaces to construct more complex
spaces. Finally, we apply our version space algebra to the text-editing domain and describe an implemented
system called SMARTedit that learns repetitive text-editing procedures by example. We evaluate our approach by
measuring the number of examples required for the system to learn a procedure that works on the remainder of
examples, and by an informal user study measuring the effort users spend using our system versus performing the
task by hand. The results show that SMARTedit is capable of generalizing correctly from as few as one or two
examples, and that users generally save a significant amount of effort when completing tasks with SMARTedit’s
help.
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1. Introduction

Despite exponential increases in processing power, computers are still difficult to use.
Although graphical user interfaces have helped to bring computing to nonspecialists, only
programmers are able to customize and optimize their computing experience. Applications
that provide a means of customization typically limit this customization to a selection of
features envisioned by the application designer, or require the user to script the application
using its programming interface. The former method is inflexible, and the latter is beyond
the means of most computer users; both are usually limited to a single application.

Programming by demonstration (PBD) has the potential to bridge the gap between
programmers and non-programmers, and allow anyone to automate repetitive, everyday
tasks (Cypher, 1993; Lieberman, 2001). Placed at the operating system level, PBD would
facilitate the automation of complex tasks involving multiple applications (Paynter, 2000).
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Rather than writing and debugging statements in an obscure programming language, which
may be completely decoupled from the visual appearance of an application, a user con-
structs a program by simply demonstrating the desired behavior of the program using the
interface with which she is already familiar. From this sequence of user actions, the PBD
system infers a program that is consistent with the observed actions and generalizes to new
instances of the task.

The macro recorders available in many applications today are a powerful but degen-
erate form of programming by demonstration. Typical macro recorders capture the exact
keystrokes entered by the user, and play them back on demand. However, these macros are
brittle, and recording a macro that performs correctly in a wide variety of different situations
is a daunting endeavor, which may require several attempts. Many seemingly simple tasks
(such as numbering lines consecutively) are difficult to automate with macro recorders that
simply play back a recorded sequence of keystrokes.

PBD user interfaces may resemble the keystroke-based macro interface. Instead of record-
ing a literal sequence of keypresses, however, a PBD system generalizes from the demon-
strated actions to a robust program that is more likely to work in different situations.

Previous approaches to programming by demonstration have employed heuristic, domain-
specific algorithms for generalizing from user actions to an executable program. In contrast,
our work is based on a general, machine learning approach. We define the problem as follows.
A repetitive task may be solved by a program with a loop; each iteration of the loop solves
one instance of the repetitive task. Given a demonstration, in which the user executes the
first few iterations of the program, the system must infer the correct program.

Each action the user performs during this demonstration causes a change in the state of the
application. Therefore, we model this problem as a machine learning problem of inferring
the function that maps one state to the next, based on observations of the state prior to and
following each user action. In this article, we describe a method called version space algebra
for learning such complex functions from examples of their inputs and outputs. A version
space (Mitchell, 1982) contains the set of all functions in a given language consistent with
a set of input-output examples. The version space algebra allows us to compose together
simple version spaces, using operators such as union and join, in order to construct more
complex version spaces containing complex functions.

PBD presents a particularly challenging machine learning problem. Since users teach the
system by performing a task manually, the creation of additional training data imposes a
burden on the user (in our study, users did not want to demonstrate more than one or two
iterations of the program). Thus the learner must be able to generalize from a very small
number of iterations. In addition, the learning system must be able to interact gracefully with
the user. It must present comprehensible hypotheses, and take user feedback into account.
Our version space algebra framework addresses both of these issues.

We illustrate our version space algebra approach by applying it to programming by
demonstration in the text editing domain. Figure 1 provides a simple example of the sort of
task faced by users in this domain: numbering items in a shopping list. Figure 1(a) shows
an example of a shopping list, and figure 1(b) shows the list after it has been numbered.

Imagine a user faced with tens or hundreds of items to number. Macro recorders, which
merely replay a fixed sequence of keystrokes, could not be used to automate a task in which
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Figure 1. A text-editing task of numbering the items in a shopping list: (a) the initial text; (b) the text after the
task has been completed; (c) a generalized program that completes the task.

the text to be inserted changes from one example to the next. Can our user do better than to
perform the numbering by hand, or to write a script in an abstract programming language
to accomplish the task? With SMARTedit, after the user numbers one item in the shopping
list, our system learns a procedure such as the one shown in figure 1(c).

Our version space approach to programming by demonstration learns a program to
automate this numbering task, and more, often from as little as a single training ex-
ample. Our solution to this challenging machine learning problem makes the following
contributions:

– Extending version spaces to complex-function learning;
– An algebra for composing simple version spaces into complex spaces;
– An application of version space algebra to programming by demonstration;
– An implemented system for PBD in text-editing;
– Exploration of a design space of PBD user interfaces and version spaces; and
– Experimental validation of our approach on a number of repetitive text-editing scenarios.

The remainder of this article is organized as follows. We begin with a formal charac-
terization of programming by demonstration as a machine learning problem, and a sample
of repetitive bibliographic tasks in the text-editing domain. Section 3 presents the ver-
sion space algebra framework we have created to address the problem of programming by
demonstration, and Section 4 discusses how the framework can be implemented to construct
complex machine learning applications. In Section 5 we present our implemented system,
SMARTedit, by describing both its user interface and the version spaces used in its con-
struction. In Section 6, we discuss our empirical evaluation of SMARTedit. We conclude
with a discussion of related work (Section 7) and future work (Section 8).
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2. PBD: A machine learning formulation

We cast programming by demonstration as the machine learning problem of inferring
generalized actions based on examples of the state changes resulting from demonstrated
actions. For example, in the desktop domain, the action of opening the newly-created file
expenses.doc causes the state of the desktop to change to reflect the opening of this
document; actions that can be inferred from this state change include “open the file named
expenses.doc” and “open the most recently created file.” While both of these hypotheses
are consistent with the demonstrated action, only one will generalize correctly to future
examples. In a graphical drawing domain, the state change resulting from the action of
changing the width of a line could be explained by such actions as “change the line width
to 4,” “change the line width to double the previous width,” and so on.

In this article, we focus on programming by demonstration in the text-editing domain.
Text-editing actions are functions that transform the application state into a new state. The
application state (T, L , P, S) of a text editor includes: the contents of the text buffer T (a
sequence of tokens in some alphabet, usually the ASCII character set), the cursor location L
(a tuple (R, C) representing a row and column position within the text buffer), the contents
of the clipboard P (a sequence of tokens), and a contiguous region S in T denoting the
selection (highlighted text).

We define a comprehensive set of text-editing actions, including: moving the cursor to
a new location, deleting a region of text, inserting a sequence of tokens, selecting a region
of text, cutting and copying the selection to the clipboard, and pasting the contents of the
clipboard at the current cursor location. Note that each text-editing action may correspond
to a sequence of keystrokes in the user interface. For instance, a sequence of cursor key
presses would all be part of the same text-editing action of moving the cursor to a new
location.

We assume that we are given the application state before and after each text-editing
action. This representation can be derived from knowledge of the application state at the
beginning of the demonstration, and observation of the sequence of keypresses and mouse
actions the user performs. By learning from the state sequence instead of the action trace,
our system is robust to a significant class of user errors. For instance, by looking only at
the final position of the cursor in a move action, our system is robust to errors where the
user overshoots the target location and then corrects herself. By paying attention only to the
state after the user has finished inserting a text string, our system is robust to a user making
a typo and then backspacing over the erroneous text.

Repetitive tasks can be automated by a program that loops over each instance of the task
and transforms one instance in each iteration. In our shopping-list example, for instance, each
iteration numbers a different item in the shopping list. The user’s demonstration generates
a sequence of states representing the changes that arise as the user modifies the text buffer.
The trace represents a prefix of the execution trace of the complete program. We state the
learning problem as follows:

Given a prefix of the target program’s execution trace, in the form of a sequence of
application states, output a program that is consistent with the observed trace and produces
the correct behavior for the remainder of the trace.
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We represent each statement in the program as a function that maps from one application
state to the next. For example, moving the cursor from the first column in row 5 to the first
column in row 6 causes the application state to change from one in which the cursor is at
position (5, 1) to one in which the cursor is at position (6, 1). The action “move to the next
line” is consistent with this state change, as is the action “move to the beginning of line 6”.
However, the action “move to line 7” is not consistent with this change, nor is the action
“insert the string hello”. Given the single state change in this trace, the learning algorithm
outputs the set of programs consistent with this example.

In this work, we describe a novel machine learning approach for inferring programs
from a partial trace of the program’s execution. We model program statements as complex
functions, and introduce a method for learning complex functions called version space
algebra. Using version space algebra, we build up a search space of functions by composing
smaller, simpler version spaces. For example, a function that moves the cursor to a new row
and column position in the text file could be composed of two simpler functions: one that
predicts the new row position, and one that predicts the column position.

2.1. Motivating examples

The previous section presented one very simple repetitive task (numbering lines in a shop-
ping list). To give a flavor for the scope of tasks that can be automated with our system,
here we decribe a few more complex tasks in a bibliographic editing context.

Consider the tasks involved in converting a list of bibliography entries from one format
to another. For instance, an entry in BibTeX intermediate format is shown in figure 2. We
define several interesting tasks over data files containing bibliographic entries such as this
one.

Bibitem-newblock. Convert a list of BibTeX entries to a human-readable form by making
the following transformation: delete the first line of the entry (the one beginning with
\bibitem) and delete each of the \newblock commands. The number of \newblock
commands varies from entry to entry; some bibliographic entries have two, while others
have three or four.

Citation-creation. Automatically construct a citation for each bibliography entry, of the
form “[Cypher, 1993]”, and insert the citation at the beginning of each bibliography
entry on its own line. The citation should be extracted from the first argument to the
\bibitem command.

Number-citations. Number each bibliography entry from 1 to N using the format [i], and
insert the number at the beginning of the bibliography entry on its own line. For example,

Figure 2. A bibliography entry in BibTeX intermediate format.
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the first entry should be numbered [1], the second [2], and so on up to the last entry in
the list.

Our SMARTedit system is able to learn programs to accomplish these tasks and more
from as little as a single iteration of the program. Section 6 discusses our experimental
results. First, however, we present the version space algebra learning framework that allows
us to learn programs from a small number of iterations.

3. Version space learning framework

Programming by demonstration requires a machine learning algorithm capable of infer-
ring functions that map complex objects into complex objects. In this section, we present
a framework for complex-function learning. Note that our framework is not specific to
programming by demonstration; it is generally applicable to supervised machine learning
problems where the learner is provided with examples of the target function.

3.1. Beyond classification learning

Our framework is based on Mitchell’s version space formulation (Mitchell, 1982), in which
concept learning is defined as a search through a version space of consistent hypotheses.
A concept learning hypothesis is a function that maps from a complex object into a binary
classification (or an n-way classification, in classification learning).

In contrast, our work is concerned with learning functions that map from complex objects
to complex objects, such as from one application state to another. For example, we want
to learn a programming instruction that is consistent with the user’s action of moving the
cursor from one location to another in the text file, or an instruction for inserting a particular
sequence of characters.

One might think that concept learning suffices for this learning problem. For example,
one may classify tuples consisting of (input, output) states into those that exhibit the correct
transformation, and those that do not. However, although this representation could be used
in learning to classify (input, output) state pairs, in practice one is not given the output state
to classify. The learner must be able to act on a novel input state, and produce a plausible
output state, not merely classify a pair of proposed states. Moreover, the complexity and
variability of these states prohibits a generate-and-test methodology.

In order to introduce our version space extensions we first define our terminology. A
hypothesis is a function that takes as input an element of its domain I and produces as
output an element of its range O . A hypothesis space is a set of functions with the same
domain and range. The bias determines which subset of the universe of possible functions
is part of the hypothesis space; a stronger bias corresponds to a smaller hypothesis space.
We say that a training example (i, o), for i ∈ domain(h) and o ∈ range(h), is consistent
with a hypothesis h if and only if h(i) = o. A version space, VSH,D , consists of only those
hypotheses in hypothesis space H that are consistent with the sequence D of examples.
(A sequential training set is required for the definition of the version space join, below;
extending the formalism to apply to non-sequential data is a direction for future work.)
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When a new example is observed, the version space must be updated to ensure that it
remains consistent with the new example by removing the hypotheses that are inconsistent
with it. We will omit the subscripts and refer to the version space as VS when the hypothesis
space and examples are clear from the context.

In Mitchell’s original version space approach, the range of hypotheses was required to
be the Boolean set {0, 1}, and hypotheses in a version space were partially ordered by
their generality.1 Mitchell showed that this partial order allows one to represent and update
the version space solely in terms of its most-general and most-specific boundaries G and
S (i.e., the set G of most general hypotheses in the version space and the set S of most
specific hypotheses). The consistent hypotheses are those that lie between the boundaries
(i.e., every hypothesis in the version space is more specific than some hypothesis in G
and more general than some hypothesis in S). We say that a version space is boundary-set
representable (BSR) if and only if it can be represented solely by the S and G boundaries.
Hirsh (1991) showed that the properties of convexity and definiteness are necessary and
sufficient for a version space to be BSR.

Mitchell’s approach is appropriate for concept learning problems, where the goal is to
predict whether an example is a member of a concept. In this work, we extend Mitchell’s
version space framework to any supervised learning problem (i.e., to learning functions with
any range). Our extended version spaces are capable of learning a superset of the functions
learnable with Mitchell’s original version space framework; in particular, they can learn
disjunctive concepts and compositions of them.

The original version space formulation took advantage of a generality partial ordering over
hypotheses in the version space in order to efficiently represent the space by its boundaries.
Observe, however, that the efficient representation of a version space by its boundaries
only requires that some partial order be defined on it, not necessarily one that corresponds
to generality. The partial order to be used in a given version space can be provided by
the application designer, or by the designer of a version space library. The corresponding
generalizations of the G and S boundaries are the least upper bound and greatest lower
bound of the version space. As in Mitchell’s approach, the application designer provides
an update function U (VS, d) that shrinks VS to hold only the hypotheses consistent with
example d .

An example of a version space that uses a partial ordering other than generality is the
FindSuffix space, which contains hypotheses that output the first location where a particular
search string occurs. Each hypothesis searches for a different string, and we order these
hypotheses by the prefix relation over strings, which is not a generality ordering. See
Section 5.2 for a more complete description of the FindSuffix space.

3.2. Version space execution

Although we have described how to update version spaces, we must also define how to use
them. We are interested not only in the literal hypotheses in a version space, but in the result
of applying those hypotheses to a novel input. We say that a version space is executed on an
input by applying every hypothesis in the version space to that input, and collecting the set
of resulting outputs. More formally, the result of executing a version space V on an input i
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is denoted by execV (i) and defined as follows:

execV (i) = {o : ∃ f ∈ V, f (i) = o} (1)

Note that two distinct hypotheses may agree in their predictions when applied to a new
input. In Section 5.1, we discuss how version space execution is used to communicate the
contents of the version space to the user for critiquing. Below, Section 3.5 extends the notion
of execution to incorporate probabilities on hypotheses in the version space.

3.3. Version space algebra

We now introduce an algebra over these extended version spaces. Our ultimate goal is to
learn functions that transform complex objects into complex objects. However, rather than
trying to define a single version space containing the entire function space, we build up the
complex version space by composing together version spaces containing simpler functions.
Just as two functions can be composed to create a new function, two version spaces can be
composed to create a new version space, containing functions that are composed from the
functions in the original version spaces.

We define an atomic version space to be a version space as described in the previous
section, i.e., one that is defined by a hypothesis space and a sequence of examples. We define
a composite version space to be a composition of atomic or composite version spaces using
one of the following operators.

Definition 1 (Version space union). Let H1 and H2 be two hypothesis spaces such that
the domain (range) of functions in H1 equals the domain (range) of those in H2. Let
D be a sequence of training examples. The version space union of VSH1,D and VSH2,D ,
VSH1,D ∪ VSH2,D , is equal to VSH1∪H2,D .

Unlike the BSR unions proposed by Hirsh (1991), we allow unions of version spaces such
that the unions are not necessarily boundary-set representable. By maintaining component
version spaces separately, we can thus efficiently represent more complex hypothesis spaces.

Theorem 1 (Efficiency of union). The time (space) complexity of maintaining a version
space union is the sum of the time (space) complexity of maintaining each component
version space plus an O(1) term.

Proof sketch2: This analysis follows directly from the fact that the union is maintained
by maintaining each component version space separately. ✷

In order to introduce the join operator, let C(h, D) be a consistency predicate that is
true when hypothesis h is consistent with the data D, and false otherwise. In other words,
C(h, D) ≡ ∧

(i,o)∈D h(i) = o.

Definition 2 (Version space join). Let D1 = {d j
1 }n

j=1 be a sequence of n training exam-
ples each of the form (i, o) where i ∈ domain(H1) and o ∈ range(H1), and similarly for
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D2 = {d j
2 }n

j=1. Let D be the sequence of n pairs of examples 〈d j
1 , d j

2 〉. The join of two
version spaces, VSH1,D1 � VSH2,D2 , is the set of ordered pairs of hypotheses {〈h1, h2〉 |
h1 ∈ VSH1,D1 , h2 ∈ VSH2,D2 , C(〈h1, h2〉, D)}.

The interpretation of the joint hypothesis 〈h1, h2〉 is left to the application designer.
One interpretation of the join is as function composition. In SMARTedit, a join is used to
sequence individual actions together to form a program. Suppose we have a version space
that defines the set of all text-editing actions supported by our system. A two-way join of
one action version space with another instantiation of the same version space thus represents
the space of programs containing two actions.

Joins provide a powerful way to build complex version spaces by maintaining the cross
product of two simpler version spaces, subject to the consistency predicate. In the general
case, the entire cross product must be materialized in order to maintain the join. In many
domain representations, however, the consistency of a hypothesis in the join depends only
on whether each component hypothesis is consistent with its respective training examples,
and not on some joint property of the two hypotheses. In this situation we say there is an
independent join.

Definition 3 (Independent join). Let D1 = {d j
1 }n

j=1 be a sequence of n training examples
each of the form (i, o) where i ∈ domain(H1) and o ∈ range(H1), and similarly for D2.
Let D be the sequence of n pairs of examples 〈d j

1 , d j
2 〉. Iff ∀ D1, D2, h1 ∈ H1, h2 ∈

H2 [C(h1, D1) ∧ C(h2, D2) ⇒ C(〈h1, h2〉, D)], then the join VSH1,D1 � VSH2,D2 is inde-
pendent.

For example, consider learning an axis-parallel rectangular decision boundary on the
Cartesian plane where each example input is a point on the plane and the output is a
label, positive or negative, for each coordinate. This concept could be expressed as a join
of two version spaces, one learning the target range for the x-coordinate and another for
the y-coordinate. If the hypothesis space contains only axis-parallel rectangles, then the
version space can be represented as an independent join. In that case, the joint version space
may then be represented as the Cartesian product of the x-coordinate’s version space and
the y-coordinate’s space. If the hypothesis space is allowed to include non-axis-parallel
rectangles, however, this efficient representation is lost and the full cross product must be
maintained.

We expect that application designers will design joins to take advantage of the indepen-
dence property. Although we have not yet formalized general conditions under which joins
may be treated as independent, Section 5 gives several examples of independent joins in
the text editing domain.

Independent joins can be stored efficiently by representing each member version space
of the join individually, and computing the cross product only when needed. Let T (VS, d)
be the time required to update VS with example d. Let S(VS) be the space required to
represent the version space VS perhaps using boundary sets.

Theorem 2 (Efficiency of independent join). Let D1 = {d j
1 }n

j=1 be a sequence of n training
examples each of the form (i, o) where i ∈ domain(H1) and o ∈ range(H1), and let d1 be
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another training example with the same domain and range. Define D2 = {d j
2 }n

j=1 and d2

similarly. Let D be the sequence of n pairs of examples 〈d j
1 , d j

2 〉, and let VSH1,D1 � VSH2,D2

be an independent join. Then ∀ D1, d1, D2, d2

S
(
VSH1,D1 � VSH2,D2

) = S
(
VSH1,D1

) + S
(
VSH2,D2

) + O(1)

T
(
VSH1,D1 � VSH2,D2 , 〈d1, d2〉

) = T
(
VSH1,D1 , d1) + T (VSH2,D2 , d2

) + O(1)

Proof sketch: If the join is independent, then the set of hypotheses in the join is the cross
product of the hypotheses in the two component spaces. In this case, it may be maintained by
maintaining the two component version spaces separately. The time and space requirements
for maintaining the join are then merely the sum of the time and space requirements for
each component version space, plus a constant factor. ✷

If the join is dependent, then in the worst case the complete materialization of the cross
product must be maintained, and the time and space requirements grow with the product of
the time and space requirements for each component in the join. Efficient representation of
non-independent joins remains an item for future work.

The application designer can decide whether or not to take advantage of an independent
join. This choice represents a tradeoff between efficient maintenance and expressivity. For
instance, some sequences of actions might not be possible, such as a paste action that does
not follow a cut action. The consistency predicate should be defined to weed out illegal joint
hypotheses such as these. For efficiency, however, the application designer could choose to
declare this join an independent join and gain efficient maintenance of the joint space at the
cost of possibly including illegal hypotheses in the join.

Note that our union operation is both commutative and associative, which follows directly
from the properties of the underlying set operation. The join operator is neither commutative
nor associative (for instance, when sequencing actions together to form a program, the order
matters). Although we do not define an intersection operator because we have found no
application for it thus far, its definition is straightforward.

Let a child version space denote a version space that is a component of another version
space (its parent). For instance, a member of a union is the child of the parent union. The
functions in a child version space may need to be transformed into a different type (i.e.,
different domain and/or range) before inclusion in the parent version space. One situation
in which this is necessary is when functions in the child version space act on only a portion
of the full input available to the parent, and return values in a simpler domain. Another
use of the transform is to convert from an application-independent domain or range (e.g.
integers) to application-dependent types (e.g. rows in the text buffer). For this purpose, we
introduce the transform operator. Transforms may be used between a parent and a single
child in the absence of other version space operators, or they may be associated with each
child in a union or join.

Definition 4 (Version space transform). Let τi be a mapping from elements in the domain
of VS1 to elements in the domain of VS2, and τo be a one-to-one mapping from elements
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in the range of VS1 to elements in the range of VS2. Version space VS1 is a transform of
VS2 iff VS1 = {g | ∃ f ∈VS2 ∀ j g( j) = τ−1

o ( f (τi ( j)))}.

Transforms are useful for expressing domain-specific version spaces in terms of general-
purpose ones, or more generally, converting functions with one domain and range to
functions with a different domain and range. Transforms allow modular reuse of domain-
independent version spaces. For instance, a version space that performed linear regression
(i.e., output the best line fitted to a set of example points) could be reused in different
application domains by transforming its input and output to the quantities available in each
domain. Section 5 and Appendix A provide more examples of transforms in the SMARTedit
application.

3.4. PAC analysis

Having defined the version space algebra, we now discuss whether these complex version
spaces can be learned efficiently. PAC learning theory (Valiant, 1984; Haussler, 1988; Kearns
& Vazirani, 1994) studies the conditions under which a reasonably-correct concept can be
learned with reasonable confidence, or in other words, the conditions under which a concept
is probably approximately correct. Although PAC analysis was originally developed for
concept learning, it is easily extended to complex-function learning.

We assume inputs are drawn from an unknown probability distribution D. We have no
guarantee that the learned function will be close to the target function, because it might be
based on misleading similarities in the observed sequence of training examples. In addition,
unless the learner is given training examples corresponding to every possible element in its
domain, there may be multiple hypotheses consistent with the given training examples, and
the learner is not guaranteed to output the correct one. For example, we might have as input
a list of papers all by the same author, and learn a function that incorrectly assumes that all
authors share the same first and last names.

The true error of a hypothesis h, errorD(h), with respect to target function f and distri-
bution D is the probability that h will produce the wrong output when applied to an input i
drawn at random according to D:

errorD(h) ≡ Pr
i∈D

[ f (i) �= h(i)] (2)

Let ε denote an upper bound on the error of the learned hypothesis, and δ be a bound
on the probability that the learner will output a hypothesis with error greater than ε. Given
desired values for ε and δ, PAC analysis places a bound on the number of examples required
for learning.

Definition 5 (PAC learnability). For a target function class F defined over a set of inputs
I of length n and a learner L using hypothesis space H , F is PAC-learnable by L using
H iff for all f ∈ F , distributions D over I , ε such that 0 < ε < 1/2, and δ such that
0 < δ < 1/2, learner L will output a version space VS such that ∀ h ∈ VS, errorD(h) ≤ ε
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with probability at least (1 − δ), using a sample size and time that are polynomial in 1/ε,
1/δ, n, and size( f ).

Blumer et al. (1987) derive the following relationship between the required sample size
m, the parameters ε and δ, and |H |:

m >
1

ε
(ln |H | + ln(1/δ)) (3)

Thus a necessary and sufficient condition for m to be polynomial when using a hypothesis
space H is that |H | = O(eP(n)), where P(n) is an arbitrary polynomial function of n.

We say that a version space operator ✸ preserves PAC learnability if, given function class
F1 that is PAC-learnable using H1, and function class F2 that is PAC-learnable using H2,
F1 ✸ F2 is PAC-learnable using H1 ✸ H2.

Theorem 3. The version space union, join, and transform operators preserve PAC learn-
ability.

Proof sketch: To show that each operator preserves PAC learnability, it suffices to show
that the number of examples and the time required to maintain the composite space remain
polynomial in 1/ε, 1/δ, n, and size( f ).

Let F1 be a function class that is PAC-learnable using H1, and similarly for F2 and H2.
Then |H1| = O(eP1(n)) and |H2| = O(eP2(n)). For the union, |H1 ∪ H2| ≤ |H1| + |H2| =
O(eP1(n)) + O(eP2(n)) = O(emax(P1(n),P2(n))). For the join, |H1 � H2| ≤ |H1| × |H2| =
O(eP1(n))×O(eP2(n)) = O(eP1(n)+P2(n)) = O(eP12(n)). The transform is a one-to-one mapping
so |H | remains constant across a transform. Since the size of the composite hypothesis space
remains at most exponential in P(n), the number of training examples remains polynomial
in ln |H |.

If F1 is PAC-learnable using H1, then the time required to learn it is polynomial, and
similarly for F2 and H2. By Theorem 1 and the previous paragraph, the time required to learn
F1∪F2 using H1∪H2 is the sum of the times required to learn F1 and F2, which is polynomial
in n. By Theorem 2 and the previous paragraph, the time required to learn F1 � F2 using
H1 � H2 is polynomial in n. The transform operator is a one-to-one mapping, so it requires
no additional time to maintain. Since the number of examples and time remain polynomial
across the union, join, and transform operators, the operators preserve PAC learnability.

✷

Note that the join of an unlimited number of version spaces does not preserve PAC-
learnability, because the required number of examples is worst-case exponential in the
number of version spaces being joined.

3.5. Probabilistic version space framework

We have constructed a probabilistic framework around the version space algebra that assigns
a probability to each hypothesis in the version space. Such a probabilistic framework allows
us to:
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– Choose better hypotheses during execution: Even before the version space converges to a
single hypothesis, it may still be executed on new instances to produce a set of consistent
outputs. The probabilistic framework allows us to choose the most likely output.

– Introduce domain knowledge: An application designer probably has a priori knowledge
about which hypotheses are more likely to occur than others. For example, when trying
to reason about a user’s decision to move the cursor through an HTML file, a hypothesis
of “634 characters forward” is probably less likely than the hypothesis “after the next
occurrence of the string <TABLE>”. This knowledge can be gathered either empirically,
such as by conducting user studies, or it may be set heuristically by the application
designer. The probabilistic framework allows the designer to cleanly introduce this type
of domain knowledge into the system. These probabilities could also be updated over
time by adapting to the user and giving higher probability to the types of hypotheses she
employs.

– Provide support for noisy data: In a traditional version space, inconsistent hypotheses
have zero probability and are removed from consideration. In a probabilistic framework,
one can assign a small but non-zero probability to inconsistent hypotheses, such that
noisy data does not irretrievably remove a hypothesis from the version space.

To use the framework, the application designer may optionally provide a priori proba-
bilities as follows:

– A probability distribution Pr(h | H ) over the hypotheses h in a hypothesis space H , such
that

∑
h∈H Pr(h | H ) = 1.

– A probability distribution Pr(Vi | W ) over the version spaces Vi in a union W , such that∑
i Pr(Vi | W ) = 1.

Each of these probability distributions defaults to the uniform distribution if not otherwise
specified. The application designer is not required to specify any probabilities in order to
use the probabilistic framework.

The probability of a hypothesis h in an atomic version space V , Ph,V , is initialized to
Pr(h | H ). As the atomic version space is updated, the inconsistent hypotheses are removed
from the version space. The probabilities of the remaining hypotheses are then renormalized.
A consistent hypothesis relative to the version space has probability Pr(h | V ), and an
inconsistent hypothesis relative to the version space has zero probability.3

Thus the overall probability of a hypothesis h in a version space V , Ph,V , is defined
inductively up from the bottom of the version space hierarchy depending on the type
of V :

Atomic: V is atomic. In this case, Ph,V = Pr (h | V ) and the probabilities are normalized.
Transform: V1 is a transform of another version space V2. Thus V1 = {h | ∃ f ∈V2 ∀i h(i) =

τ−1
o ( f (τi (i)))}. Since transforms are one-to-one, Ph,V1 = Pf,V2 and no normalization is

necessary.
Union: V is a union of version spaces Vi with corresponding probabilities wi . Since the

version spaces may not be disjoint, the probability of a hypothesis h is the sum of its
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weighted probabilities:

Ph,V =
∑

∀ i |h∈Vi

wi × Ph,Vi (4)

If one of the version spaces in the union collapses and contains no hypotheses, then the
probabilities of the remaining hypotheses in the union must be normalized.

Join: V is a join of a finite number of version spaces Vi . Thus, V = {〈h1, h2, . . . , hn〉 | hi ∈
Vi , C(〈h1, h2, . . . , hn〉, D)}. In this case, Ph,V = k ×∏

i Phi ,Vi , where k is a normalizing
constant. This constant accounts for the probability mass lost due to the consistency
predicate C not holding for all the hypotheses in the Cartesian product. If the join is
independent, the consistency predicate always holds, so the normalizing constant is
unnecessary.

Using this framework, each hypothesis in the version space has an associated probability.
If the execution of a version space V on an input i produces a set of outputs o, we assign a
probability Po

V to each of these outputs:

Po
V (i) =

∑

∀ f | f (i)=o

Pf,V (5)

We employ version space execution and the probabilistic framework to present the results
of the learner to the user. Our SMARTedit system presents a list of output states to the user,
ranked by probability, and allows her to select the correct one by cycling through the different
output states. Section 5 describes SMARTedit in more detail.

4. Application design with version space algebra

Choosing an appropriate representation is typically one of the most critical decisions in for-
malizing a problem as a machine learning problem (Langley & Simon, 1995). The version
space algebra framework enables application designers to build machine learning appli-
cations more easily in domains unsuitable for the customary classification representation,
such as the PBD domain. By providing a framework for learning complex functions (func-
tions that map from a complex input to a complex output), we hope to facilitate the use of
machine learning in new classes of domains.

In order to use the version space algebra to model an application, the application designer
must specify a set of atomic and composite version spaces and designate a single target
space, as shown in Table 1. The role of atomic spaces, composite spaces, and the target space
in version space algebra is analogous to the role of terminal symbols, nonterminal symbols,
and the start symbol in a context-free grammar. The simplest update function examines
each hypothesis in the version space individually, and discards the inconsistent hypotheses.
A more efficient update function represents only the boundaries of the consistent set, and
updates only the boundaries given each training example. The partial order is a means to
this end. Similarly, the simplest execution function separately computes the output for each
hypothesis in the version space and assigns probabilities to outputs accordingly. However,
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Table 1. Domain description to be provided by the application designer in order to use the version space algebra
framework.

For each atomic version space:

1. Definition of the hypothesis space.

2. A partial order on the hypothesis space.

3. An update function that updates the version space to contain only those hypotheses
consistent with a given example.

4. An execution function that computes a probability for each possible output given an input.

For each composite version space:

1. Formula expressing it in terms of atomic version spaces, previously-defined composite
spaces, and version-space-algebraic operators.

2. Transformation functions that convert examples for the composite version space into the
corresponding examples for each component version space.

3. An execution function that takes the outputs (and probabilities) of the component spaces’
execution functions and produces a probability for each possible output of the composite
space.

The target composite version space.

(One of the previously-defined composite spaces.)

it may be possible to find the probability for each output more efficiently; we show an
example in the next section. When neither approach is feasible, approximate probabilities
may be computed by sampling from the version space; this area holds promise for future
research.

Many PBD researchers have found that incorporating domain knowledge into a learning
system is difficult. While we do not claim to have completely solved this problem, we
believe that the version space algebra framework makes it easier to incorporate domain
knowledge into a PBD application by crafting the version space appropriately.

Our framework also enables creation of a library of reusable, domain-independent ver-
sion spaces that can greatly speed up this process. In our experience creating the SMART-
edit system, we have begun the construction of such a library of reusable version spaces.
The framework supports incremental design of the learning application, with new version
spaces being added as necessary. The modularity and simplicity of the version space ap-
proach support fast construction of new version spaces, and facilitate rearrangement of the
hierarchical version space structure as the application matures. Knowledge acquisition tools
to automate the version space construction task would be an interesting direction for future
research.

One of the primary responsibilities of the application designer is to craft the tradeoff
between expressiveness and sample complexity for a particular application by selecting
appropriate version spaces for inclusion in the version space hierarchy. An appropriate
choice of bias can make the difference between a system that learns from few examples
and a system that is incapable of generalizing. In the following section, we present an
extended example of application design with the version space algebra in the context of our
SMARTedit system.
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5. The SMARTedit PBD system

In order to test our version space algebraic framework for PBD, we implemented a system
called SMARTedit in the domain of text editing. SMARTedit was implemented from scratch
using Python and the Tk toolkit. We have also ported it to Emacs, where it was configured to
replace the builtin macro recorder. It has been used for a wide range of repetitive tasks, in-
cluding manipulation of highly-formatted columnar data, transformation of semi-structured
XML or bibliographic data, editing programming language code, and writing unstructured
texts.

SMARTedit’s learning component uses the version space algebra presented in Section 3.
In this section, we first describe SMARTedit’s user interface, then give a tour of some
of its more interesting version spaces. A complete summary of all version spaces used in
SMARTedit is given in Appendix A.

5.1. SMARTedit user interface

We have designed SMARTedit’s user interface to make it accessible to non-programmer
users. Rather than constructing a program in an arcane programming language, we enable
users to build the program by demonstrating its effects on concrete examples. Our target
users are familiar with the basic operation of an application, and know how to accomplish
tasks through direct manipulation. They are not required to know the programming interface
to the application.

We illustrate SMARTedit’s user interface on a simple repetitive task: deleting the HTML
comments, including their contents, from a text file (figure 3).

The four buttons across the top of the interface control SMARTedit’s programming by
demonstration functionality. To begin creating a SMARTedit program, the user pushes the
“Record iteration” button. The button turns red, indicating that her demonstration is being
recorded, and its function changes to “Stop recording”. The user then begins demonstrating
what she wants SMARTedit to do. In this case, the user presses arrow keys to move the
cursor to the beginning of the first HTML comment (in front of the text <!--) then presses
the delete key until the extent of the comment (up until the -->) has been deleted. SMART-
edit records the sequence of states that result from the user’s editing commands, and learns
functions that map from one state to another.

Unlike standard macro recorders, our PBD system disregards the actual keypresses a user
performs at each step. For instance, a user may be performing a search, but if she sees the
next occurrence of the search term on the screen she could use the mouse or cursor keys
to position the cursor rather than invoking the search facility. SMARTedit is robust to this
kind of behavior because it does not learn from the literal keypresses. Instead it collapses
sequences of similar events together (e.g., series of cursor-key presses, invocations of the
search dialog, and moving the cursor with the mouse) under the assumption that these all are
part of the same high-level action (e.g., moving the cursor). SMARTedit thus learns from
the application state before and after the entire sequence of events; the important feature is
the resulting state change, not the keystrokes by which that state change was accomplished.
An interesting direction for future work would be to use the literal keypresses to bias the
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Figure 3. User interface for the SMARTedit system.
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probabilities during learning. For instance, it is highly likely that the user is performing a
search when she invokes the search facility.

Once the user has completed one iteration of the repetitive task, she clicks the red but-
ton to indicate that she has completed the iteration. At this point, SMARTedit initial-
izes the version space using the recorded state sequence as an example. In this exam-
ple, the user performed two actions: moving the cursor to the beginning of the HTML
comment, and deleting to the end of the comment. This demonstration results in a se-
quence of three states: the initial state of the application (with the cursor at the top of the
text file), the state after the cursor has been moved, and the state after the text has been
deleted.

SMARTedit updates the version space lazily as the user provides more demonstrations,
which allows it to consider infinite version spaces that are only instantiated on receipt of a
training example. Given these observations, SMARTedit’s version space contains a number
of candidate hypotheses for the first step of the program, including:

– Move to row 4 and column 21,
– Move forward forty-two characters,
– Move to after the string sample,
– Move to after the string ample,
– Move to before the string <, and
– Move to before the string <!--

At this point the user may either provide more demonstrations (by continuing to execute
the program on subsequent iterations), or ask SMARTedit to execute its learned procedure
by pressing the “Step” button. In our example, pressing the “Step” button causes SMART-
edit to display its first guess: it shows the cursor moving to the second paragraph of the text,
at the end of the word example, with 36% probability (figure 3(b)). The best hypothesis
(shown in the green bar at the top) explains that SMARTedit is moving after the word ample
(because the word sample happened to precede the first HTML comment).

SMARTedit has performed the wrong action, so the user corrects its prediction by invok-
ing the “Try another guess” button. Each press of this button causes SMARTedit to cycle to
its next most likely prediction. Once SMARTedit shows the correct action, the user presses
the “Step” button to continue on to the next step. The current implementation of SMART-
edit always makes a prediction, even if the best hypothesis has very low probability. In a
related paper (Wolfman et al., 2001), we describe a mixed-initiative interface layered on
top of SMARTedit that automatically chooses the best interaction mode, such as presenting
a hypothesis or asking the user to provide more demonstrations.

Continuing with our HTML comment deletion example, SMARTedit’s second guess
is correct (moving the cursor to the beginning of the next HTML comment, with 26%
probability). The user then presses the step button to move on to the second step in the
program. SMARTedit’s best guess for the second action is correct: delete the extent of the
comment, with 26% probability (figure 3(c)).

SMARTedit learns from the user’s actions even during the stepping phase, so that on
the third iteration of the program it will have learned both from the first iteration (demon-
strated by the user) as well as from the second (in which the user corrected SMARTedit’s
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predictions). When the user selects the correct action, SMARTedit updates its version
space with this new information. Any hypothesis that is inconsistent with this new exam-
ple (including those hypotheses that supported SMARTedit’s first, incorrect, prediction)
are removed from the version space. For instance, the sample and ample hypotheses are
discarded from the version space because they are inconsistent with the second iteration, as
are all the row and column hypotheses. The correct hypothesis (move to the string <!--) is
consistent with both iterations, so it remains in the version space.

In our example, when the user presses the “Step” button to begin deleting the third
HTML comment, SMARTedit correctly moves the cursor to the third comment, with very
high (93%) probability. Once the user is confident that SMARTedit has learned the correct
program, she can use the “Run program” button to ask SMARTedit to execute its program
on the remainder of the text file without any further user input.

Each of SMARTedit’s predictions is drawn from the hypothesis space constructed using
our version space algebra. The next section highlights some of the more interesting version
spaces used in SMARTedit. A complete listing of the version spaces used in SMARTedit
can be found in Appendix A.

5.2. SMARTedit version spaces

The complete version space hierarchy is shown in figure 4. First we describe how SMART-
edit learns a single action. Then we show how to learn complete programs, an action at a
time.

ActionActionAction

Program

Move

Location

Action

Select

Location
Delete

Location
Location

Insert

LinearInt

Number

LinearInt

ConstStr

Indent
ConstStr

DeleteSel

Cut
Copy

Paste

StrNumStr IndentStrConstStr

ConstStr

iterationro
w

Location

RowCol

CharOffset

LinearIntFindFix

WordOffset

Prefix

Column

RelCol

Row

LinearInt

AbsCol

ConstInt

RelRow

LinearInt

AbsRow

ConstInt

Suffix

to
ke

n−
ty

pe

token−type

SuffixPrefix

Figure 4. Version spaces used in the SMARTedit programming by demonstration system. The upper tree shows
the complete version space for a Program, expressed in terms of Action version spaces (lower left tree). Action
version spaces are in turn expressed in terms of Location version spaces (lower right tree). Italicized text denotes
an atomic version space, while regular text denotes a composite version space. Edge labels denote transformation
operations; for clarity, we omit most transformation operations from the figure.
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5.2.1. Learning actions. The lower-left hierarchy in figure 4 shows the Action version
space used to learn text-editing actions. Each function in the Action version space maps
from one application state to another. A training example for this version space consists of
the pair of states before and after the target action is performed, and the goal of learning is
to produce the function (text-editing action) that represents the correct mapping from input
state to output state.

The Action version space (figure 4) consists of a union of the different types of text-
editing actions supported by SMARTedit: moving the cursor, inserting and deleting text,
and manipulating the clipboard. For instance, the Move member of the Action union denotes
the set of all actions that move the cursor to a different location in the text buffer. Similarly,
the Select member of the union denotes the set of all actions that highlight a region of text
starting from the current cursor position and ending in a new location.

Many of these text-editing actions are expressed in terms of locations in the text buffer.
We encapsulate a useful collection of ways to specify a location within the buffer in the
Location version space. The Location version space unions together a variety of different
version spaces specifying different types of cursor positioning, such as string searching or
row and column positioning. A version space transform is used to convert the functions in
a Location space to the functions in the parent Move (or Select, etc.) space. For instance,
consider a Location function that outputs the location on the same row but five columns to
the right of the current cursor. Transformed, the corresponding Move function would map
from the complete application state to a new state in which the cursor is positioned five
columns to the right.

One way to specify a location in the buffer is by its row and column coordinates. We
designed the RowCol version space (a member of Location) as an independent join of a Row
version space and a Column version space. The Row functions that map from the current
row coordinate to a new row and column functions are defined similarly. The Row space
consists of a union of two spaces: AbsRow (absolute row positioning, such as “on row 5”)
and RelRow (relative positioning, such as “on the next row”). AbsRow is a transformation
of a domain-independent version space drawn from our library of generic version spaces:
ConstInt, which holds the set of functions f (x) = C for any integral constant C . The
transformation converts from functions with integral domain and range to functions with
row coordinates as domain and range. Similarly, RelRow is a transformation of the domain-
independent LinearInt version space, which contains functions f (x) = x + C for any
integral constant C . All of these row and column version spaces join together to allow a
user to specify locations such as “on the next row and the 5th column” or “on the previous
row and the first column”.

Another way to specify a location in the text file is relative to the next occurrence of a
string. If the cursor is positioned after (before) a string, we say that the user is searching
for the next prefix (suffix) match. Suppose the user has moved the cursor to the end of the
next occurrence of the string “PBD”. From the system’s point of view, the user may have
been searching for the prefix “PBD”, the prefix “BD”, the prefix “D”, or a superstring of
“PBD”. If, however, a user skipped over an occurrence of the string “D” while moving to
“PBD”, then the “D” hypothesis is not consistent. The FindPrefix and FindSuffix version
spaces represent these types of string-searching hypotheses.
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More formally, the FindPrefix and FindSuffix hypothesis spaces include functions that
map from an input state to a location. Each function in the FindSuffix space maps from the
input state to the location at the beginning of the next occurrence of some string T . We
choose the partial order for FindSuffix according to a string prefix relationship in the string
T ; if f is a function of T1 and g is a function of T2, then f ≺ g iff T1 is a proper prefix of
T2. (FindPrefix is defined similarly.) For clarity, we omit the function notation and simply
refer to the function as the string on which it depends. The least upper bound (LUB) and
greatest lower bound (GLB) boundaries of the FindSuffix version space are initialized to be
S and C respectively, where S is a token representing the set of all strings of length K (some
constant greater than the maximum text buffer size) and C is a token representing the set of
all strings of unit length. When the first example is seen, the LUB becomes the singleton set
containing the contents of the text buffer following the cursor (a sequence of tokens), and
the GLB becomes the singleton set {“c”}, where c is the token immediately following the
cursor. After the first example the LUB and GLB will always contain at most one member
each. Given a new training example in which the string T follows the cursor, and the LUB
contains the string S, the LUB is updated to contain the longest common prefix of S and
T . If there is no common prefix, the version space collapses to the empty set. The GLB is
updated based on the strings that were skipped over between the starting location and the
final position. It is updated to contain the longer of its previous value and the shortest prefix
of S which was not skipped (and thus invalidated as a hypothesis) between the starting and
ending cursor locations. If S itself was skipped, the version space collapses.

Note that the FindPrefix and FindSuffix spaces are partially ordered by a string pre-
fix/suffix relation, but not by the generality partial order. For example, if a FindSuffix
hypothesis were to return the set of locations matching the search string, then two Find-
Suffix hypotheses would be ordered by the generality ordering, since one hypothesis would
return a superset of the locations returned by the other. However, in our formulation, each
string search hypothesis returns only a single location corresponding to the next occurrence
of the string. Two string search hypotheses, one of which is a prefix of the other, may not
necessarily produce the same location when executed in a given input state. For instance,
the first occurrence of the string th in this paragraph is not the same as the first occurrence
of the string the. Thus, while the two hypotheses are partially ordered by the string prefix
relation, they are not ordered by the generality relation.

Note that we can execute the FindPrefix and FindSuffix version spaces efficiently without
having to materialize the complete version space and execute each hypothesis individually.
Consider the FindSuffix space (FindPrefix is handled similarly). This version space is equiv-
alent to a set of strings, the longest of which is the string in the LUB, the others being some
prefix of the string in the LUB. Intuitively, if one finds the longest string match first, then
all prefixes which have not matched previously will also match at this location, and these
shorter string hypotheses do not have to be executed individually. The execution maps each
string in FindSuffix to the cursor location corresponding to its first occurrence in the text file
following the location of the cursor. We can perform this search efficiently in time O(st)
where s is the length of the string and t is the length of the text file, by comparing the string
against the text starting at every position in the text file following the cursor position. Let ps

denote the probability of the hypothesis containing the string s. The algorithm is as follows:
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find the first location where the first k1 characters of the text and search string match. Denote
the matching string as s[1, k1]. Output this location, with associated probability

p =
k1∑

i=1

ps[1,i] (6)

Continue searching from this occurrence for a match of at least length k2 > k1. Output the
next matching location with probability

p =
k2∑

i=k1+1

ps[1,i] (7)

Repeat until all prefixes have been matched or the end of text is reached, and return the set
of output locations and their probabilities as the result of the execution.

Within each FindPrefix and FindSuffix version space, we provide a probability distribution
over the hypotheses in the version space. We define a bell-shaped probability distribution
such that strings consisting of exactly five characters are most likely, while shorter or longer
strings are a priori less likely.4 We chose this distribution heuristically, based on empirical
observations. This probability distribution explains why, in the HTML comment deletion
example above, SMARTedit’s first guess was to move to the end of the string ample, which
is five characters long, while the correct hypothesis (move to the string <!--) was less likely
at four characters long.

SMARTedit uses version space transformations to provide a subset of regular-expression-
style string searching, in addition to the strict substring matching performed by the FindPre-
fix and FindSuffix spaces. The “tokenization” transformation (shown in figure 4 beneath the
FindFix space) converts the input text from a sequence of character tokens into a sequence
of token types. Prefix and suffix searching is performed over these transformed sequences
of token types. SMARTedit recognizes several classes of token types, including the sets
of lowercase letters, uppercase letters, punctuation, digits, and whitespace. The tokenized
string search version spaces allow SMARTedit to recognize hypotheses such as “the loca-
tion after a sequence of five digits” (a postal ZIP code) or “the location before a sequence
of two uppercase letters” (a state or province abbreviation).

As application designers, we believe that string searching is more likely than row and
column positioning for most text-editing tasks, so we give the string search version space
in the Location union higher prior probability than the row-column space. This weighting
explains why a string search hypothesis showed up as the most likely prediction in the
HTML comment deletion example described above, even though row-column hypotheses
were present in the version space after the first training example. One direction for future
work could be to change the prior probabilities based on the type of the file being edited. For
instance, users editing structured tabular data may be more likely to use row and column
positioning than string searching.

SMARTedit also recognizes several different types of insertion actions, as expressed in
the Insert version space. The most straightforward insertion action is inserting a constant
string. However, SMARTedit also recognizes regularly varying strings. For instance, the
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StrNumStr space recognizes strings that consist of a constant string followed by a number
followed by another constant string. The number can be a function of either the row number
or the iteration number. For example, in the shopping-list task described in the introduction,
one would want to insert the row number, followed by the string “.�”. SMARTedit’s
representation of actions as functions that map from one application state to another makes
it easy to support functions like these, whose output depends on some variable in the state
such as the row number of the insertion cursor.

At the leaves of the version space hierarchy are several instantiations of domain-
independent version spaces, such as the ConstInt and LinearInt spaces (functions like
f (x) = C and f (x) = x + C).

Now that we have described how SMARTedit can learn a single action, we move on to
learning programs as sequences of actions.

5.2.2. Learning complete programs. Repetitive text-editing tasks are generally solved by
constructing a program with a loop that iterates over each of the repetitions. The body of
the loop consists of the sequence of actions to perform one instance of the task, such as
deleting a single HTML comment, and the loop is repeated until the task has been completed.
Some tasks may require nested loops within the main loop. For instance, the main loop in
a bibliography-editing task may iterate over the list of citations, and within each iteration
of the main loop, a nested loop is required to iterate over each of the authors within the
citation.

First we describe how SMARTedit learns programs with only a single loop and a fixed
number of actions in the loop body. As the user executes the target program, she performs
a sequence of actions (program statements) which are recorded by the system as a se-
quence of examples (input/output state pairs). The learning system must assign each of
these state pairs to the program statement which was executed to create the example. If
we knew the program counter, we could easily determine which step of the program was
executed at each point. However, requiring a user to explicitly specify a program counter
during the demonstration is unfeasible; instead we attempt to infer the program counter
based on partial segmentation information in the trace. Hence, we have experimented
with three user interfaces that enable the user to provide varying amounts of segmentation
information:

– Full segmentation: the user presses a button before and after demonstrating each iteration
of the program.

– Start segmentation: the user presses a button at the beginning of the demonstration, but
does not need to press any button between iterations. The user may perform any number
of full or partial iterations before completing the recording.

– No segmentation: the system is always recording the user’s actions; the user does not
have to tell the system when she begins a repetitive task.

Along with each of these interfaces we describe the version space structure required to
learn from traces with these varying amounts of segmentation.

The full-segmentation interface generates a trace broken up into separate iterations of
the same loop. The top tree in figure 4 shows the version space for learning programs with
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Figure 5. Unsegmented program version space used to learn programs without explicit segmentation information.

this structure: the Program version space consists of an N-way join of a fixed number of
Action version spaces. The number of actions in the program is determined lazily once the
user has demonstrated at least one iteration of the program. Each iteration of the program
corresponds to a single training example for the Program version space, and consists of a
sequence of application states, one more than the number of actions in the program. The
first and second states are used to update the first Action space as a training example, the
second and third states used to update the second Action, and so on.

The transformation function for the Program space thus takes a sequence of states
s0, s1, . . . , sn and constructs n examples of the form 〈si−1, si 〉, such that the i th tuple (con-
sisting of an input and an output state) is used to update the i th Action version space.
Demonstrating a second iteration, or stepping through the program and correcting the sys-
tem’s predictions, both result in a similar sequence of states that is used to refine the version
space.

Some application designers may feel that providing explicit segmentation (pressing a
button before and after every iteration) is too burdensome for their users. For this reason we
experimented with the start-segmentation user interface, which only requires a user to press
a button at the start of the repetitive task. The result of such an interaction is a program trace
of N actions. We assume that the user has demonstrated at least one complete iteration,
and therefore know that the iteration length M (the number of actions in the loop body)
is at most N . For instance, a user performing a program with a loop body of three steps
could begin recording, demonstrate the first three actions in the first iteration, demonstrate
two actions from the second iteration, and only then press the stop-recording button. The
trace thus contains the application state before and after each of those five actions, but the
iteration length of the target program is unknown and could be anywhere from one to five
actions.

We have constructed the UnsegmentedProgram version space (figure 5) to learn pro-
grams from such unsegmented traces. The key idea is to maintain hypotheses for programs
of all possible program lengths, from 1 to M . UnsegmentedProgram consists of a union
of N Program version spaces, such that Program1 consists of a single Action, Program2

is a join of two Actions, and ProgramN is a join of N Actions. Program1’s single Action
version space is updated with all N observed actions as if each action were an example of
a unit-length program. Program2 is updated with N/2 pairs of actions, and so on. We also
weight each member of the union such that shorter programs are given more probability
than longer programs.
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In practice, many of these Program version spaces collapse quickly because the action
types do not match up except in programs of length M and multiples of M . In our five-step
example, the two most likely choices would probably be either a length-3 program or a
length-5 program. As soon as the user performs or confirms the sixth action, SMARTedit
has a good chance of determining the correct program length.

Execution of the UnsegmentedProgram version space produces the union of the execu-
tion of each of the nested Program version spaces, and presents hypotheses to the user such
as “Step 3 of 3 is Delete...” or “Step 1 of 5 is Move...”.

A third possibility we have explored is the no-segmentation interface. In this interface, the
system continually records the user’s actions, and automatically detects when she performs
a repetitive task. The user does not have to explicitly notify the system before she begins
the repetitive task. A trace thus generated consists of the application state before and after
every action the user has performed since she started using the application.

In order to learn a repetitive program from traces such as these, we assume that the
user first performs an unknown number of unrelated actions, then performs at least one
full iteration of the target program, followed by any number of full or partial iterations.
If we knew where the program started, we could use an UnsegmentedProgram version
space to learn the target program. Hence, to learn from such traces, we maintain hypotheses
for every possible starting location in the trace. The StartlessProgram version space is a
union of UnsegmentedProgram version spaces. The version space learns from an ongoing
trace. As each new action is observed, a new UnsegmentedProgram is created such that its
training examples begin at this action. The same action is also used to update all the other
UnsegmentedProgram version spaces as if it were the next action in the sequence for each
such version space.

As the expressiveness of the version space grows, its complexity also increases. In the
simplest case, the Program version space maintains a number of Action version spaces
that is proportional to the number of actions in one iteration of the target program. An
UnsegmentedProgram space maintains a number of Action version spaces proportional to
the square of the number of actions in the demonstration (which is assumed to be at least as
long as a single iteration). A StartlessProgram space maintains a number of Action spaces
proportional to the cube of the number of actions in the demonstration.

In practice, while unsegmented programs can be learned reasonably quickly with few
training examples, the StartlessProgram version space is less useful, primarily due to the
fact that it never stops growing; each new action may always be the start of a new program.

Both the UnsegmentedProgram and StartlessProgram version spaces are strict super-
sets of the basic Program version space; any program that could be learned from a fully
segmented trace can also be learned from a trace with partial segmentation information.
Since these alternatives define more complex hypothesis spaces, the price of reduced user
effort is potentially requiring more examples to converge to a correct program.

Thus far, we have discussed the interfaces and version spaces for learning programs with
a single loop and a fixed number of actions per loop iteration. Our system is also capable
of learning programs with nested loops, in which a program may contain a sub-program
that iterates several times before the main program resumes execution. Nested programs
are straightforwardly expressed as a version space. In SMARTedit, we extend the Program
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version space of figure 4 to support nested programs by replacing each Action member of
the join with a union of Action and UnsegmentedProgram. This type of recursive definition
is possible since the version space is lazily constructed.

When the program contains nested loops, knowledge of the program counter becomes
even more important. We experimented with one user interface for demonstrating nested
loops: a pair of buttons (“Start nested loop” and “End nested loop”) that the user must
push before executing the nested loop and after execution of the nested loop is completed.
Thus the user must both segment each iteration of the main loop, as well as demarcate the
beginning and end of the execution of the nested loop.

This interface gives the system just enough information about the program counter to
determine whether each step belongs to the main loop or a nested loop. We hypothesized that
asking the user to explicitly segment the nested loop into iterations was too much of a burden,
and chose to learn the nested loop’s program from the trace using an UnsegmentedProgram
version space. Similarly, we limited the nesting depth to one so as not to confuse the
user with multiple levels of nested loops. The user is still able to demonstrate programs
with multiple sequential nested loops. In future work we plan to investigate alternative
user interfaces for extracting the program counter information in the presence of loops, as
well as experimenting with version spaces to learn from nested-loop traces without any
segmentation information.

Another item for future work is to learn loop termination conditions. Upon execution of a
nested loop, our current implementation requires a user to explicitly tell SMARTedit when to
exit the nested loop and resume execution of the main program. Note that this decision must
be made as the user is stepping through the program; unless otherwise directed, SMARTedit
will continue executing the actions in the nested loop forever. We anticipate that a version
space containing an appropriate set of condititionals could be joined to the nested loop’s
UnsegmentedProgram version space in order to learn loop termination conditions.

As this section has illustrated, our version space algebraic framework enables the ap-
plication designer to tailor the version space to the abilities and preferences of the target
audience. There is an inherent tradeoff between expressiveness and sample complexity;
choosing an appropriate point on this spectrum is the responsibility of the application de-
signer. In the next section, we report on experimental results conducted primarily on a
version of SMARTedit equipped with the full-segmentation interface, as well as a few
experiments with the nested loop interface.

6. Experimental results

We evaluate the SMARTedit system using two methods. First we summarize SMARTedit’s
performance on a collection of repetitive text-editing scenarios. Then we report on the
results of a small user study.

6.1. Empirical evaluation

We have applied the SMARTedit system to a representative collection of repetitive text-
editing scenarios; see Appendix B for a brief description of each scenario. Each scenario
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Table 2. List of scenarios used to test the SMARTedit system, total number of iterations in each, and number of
iterations required by the system to induce a procedure that behaves correctly on the remaining iterations.

Scenario No. of training iterations Total no. of iterations

bibitem-newblock∗ 1 13

c++comments 1 5

column-reordering 1 14

country-codes 1 4

modify-to-rgb-calls 1 20

number-fruits 1 14

prettify-paper-info 1 10

subtype-interaction 1 3

xml-comment-attribute 1 24

addressbook 2 6

citation-creation 2 13

grades 2 7

html-comments 2 13

latex-macro-swap 2 8

number-citations 2 13

number-iterations 2 7

smartedit-results 2 27

zipselect 2 6

game-score 3 7

html-latex 3 7

indent-voyagers 3 32

mark-format 3 6

bold-xyz 4 50

citation-to-bibtex 5 10

bindings 6 11

boldface-word 6 11

ul-to-dl 6 7

OKRA 10 14

outline 10 14

pickle-array 19 117

contains the trace of a target program executed for a number of iterations on a text file. A
trace is a sequence of (T, L , P, S) states (text buffer, cursor location, clipboard contents,
and selection region). Table 2 lists the scenarios we used to evaluate SMARTedit, along
with the total number of iterations in each, and the number of iterations needed to train
the system before the learned program performed correctly on all remaining iterations
(i.e., applying the correct transformations to the remaining text). A * indicates that the task
requires nested loops, and the result shown assumes that SMARTedit is given the termination
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condition for the loop. The tasks shown in boldface are the bibliography tasks described in
Section 2.1.

We test SMARTedit using an incremental learning methodology: train on the first iter-
ation, then test the learned program’s accuracy on the remaining iterations. If SMART-
edit performs correctly on the remaining iterations, then we say that it requires only a
single iteration to learn the task correctly. If not, we train on two iterations, test its ac-
curacy on the remainder, and so on. The demonstrations were performed by an expe-
rienced SMARTedit user (one of the authors). In some cases, the system requires only
a single iteration to correctly learn a program that performs correctly on the remain-
der of the text. Visual inspection of the learned programs indicates that SMARTedit’s
generalizations typically agree with the human’s target program. Although we do not
present timing results, the learning algorithm runs virtually in real time on a 600 MHz
Pentium III.

Many of the scenarios were learnable with only two iterations. Some of the others required
more training because of irregularities in the text data. For example, the pickle-array scenario
involves converting an array of numbers from one format (a Python pickled format) to a
different format. After two training iterations, the system learns a program that performed
correctly on the third through eighteenth iterations. However, the nineteenth iteration is
irregular: it crosses a row boundary in the array representation. Two competing hypotheses
(which up until this point had both been consistent with the trace) now make differing
predictions. In this case, the incorrect hypothesis has higher probability, requiring the user
to correct SMARTedit’s guess on this example. According to our metric, SMARTedit thus
requires nineteen iterations to learn the task correctly, whereas if it had been given the
nineteenth example earlier, it would have required only three iterations. We are currently
investigating the use of active learning to identify anomalous examples earlier in the training
process (Wolfman et al., 2001).

The bibitem-newblock scenario (marked with a * in Table 2) requires the use of nested
loops to solve correctly; this task is described in Section 2.1. The table shows the number
of iterations required to learn to perform this task correctly assuming that the termination
condition is given (i.e., that the user indicates to SMARTedit when to terminate the nested
loop and resume execution of the main program); SMARTedit is not yet able to predict
when to terminate the nested loop on its own. In future work we plan to extend SMARTedit
to learn the loop termination condition as well.

6.2. User evaluation

We conducted a pilot user study to gather user experiences with the SMARTedit system.
We asked six undergraduate computer science majors to perform a set of seven tasks with
and without SMARTedit’s programming by demonstration capability. The study partici-
pants are not meant to be completely representative of our intended target audience (which
includes non-programmer users); an item of future work will be to conduct a more compre-
hensive study with a more diverse set of participants. Our study determined that SMART-
edit was useful for this set of users, and solicited feedback on its design prior to further
development.
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We began by giving each participant a five-minute introduction to SMARTedit’s user
interface, and guided them through one or two simple tasks using SMARTedit to familiarize
them with the interface. We then asked them to perform a sequence of seven tasks, first
using SMARTedit’s programming by demonstration feature, and again using the same editor
but without invoking the programming by demonstration capability (i.e., completing the
repetitive task manually). If there were a practice effect from a user performing the same
task twice in a row, the result would be biased against our system.

Each participant spent less than an hour total interacting with SMARTedit; none had had
any prior experience with the program. Again, we chose this methodology to bias the results
against our system; users with more experience using the system would be more efficient
and show even greater gains than those shown in our results.

After the users had finished the tasks, we asked them to complete a form with questions
about SMARTedit’s helpfulness, usability, and whether or not they would consider using
the program again.

The tasks we chose varied in difficulty and ranged from 4 to 27 iterations per task. They
were chosen to reflect reasonably-sized tasks that we imagine users might naturally face.
For each task, and for both SMARTedit and manual execution, we measured the time, the
number of key presses, and the number of mouse clicks a user required to complete the
task. The tasks were, in order: html-comments, country-codes, column-reordering, xml-
comment-attribute, smartedit-results, number-citations, and bibitem-newblock.

The first six tasks were straightforward fixed-length programs, roughly increasing in
difficulty; the seventh task (bibitem-newblock) required users to construct a program with
a nested loop. We allowed users to give up on completing a task with SMARTedit if they
became frustrated after five minutes of effort. All users completed the first six tasks with the
exception of two users on the fifth task. Only one user successfully completed the seventh
task using nested loops; another cleverly solved it with SMARTedit using two passes over
the data.

All nested loop failures occurred because users failed to maintain the close attention
required to guide SMARTedit back to the main program after execution of the nested loop.
Users assumed that SMARTedit would learn how to terminate the loop on its own. More
work needs to be done to improve the interface for demonstrating and executing nested
loops; learning loop termination conditions is clearly a priority for future work.

We measured SMARTedit’s performance with two metrics: the time savings gained by
using SMARTedit over doing the task manually, and the percent of user actions (both
keypresses and mouse clicks) saved using SMARTedit compared to manual.

Figure 6(a) shows the difference in seconds between the time taken to complete the task
manually, and the time to complete it with SMARTedit. Bars above the zero line indicate
that a user completed the task more quickly with SMARTedit. X’s indicate missing data;
in two cases, we failed to collect timing data during the experiment, and two users were
unable to complete the fifth task. Users learned to use SMARTedit more effectively over
time; by the fourth task, most users were able to benefit significantly from SMARTedit.
Although not all users spent less time with SMARTedit than on the manual task, the results
are encouraging given that none of the participants had any prior experience with the
system.
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Figure 6. (a) Time and (b) user action savings using SMARTedit compared to performing the task manually, for
users A–F. Bars above the zero point show increased savings. X’s indicate missing data.

Figure 6(b) shows the percentage of user actions saved when using SMARTedit as a
fraction of the number of manual actions (the number of manual actions minus the number
of SMARTedit actions, divided by the number of manual actions). We define a user action
to be either a keypress or a mouse click. Bars above the zero point show a savings with
SMARTedit compared to manual execution. The higher the bar, the fewer actions a user
performed with SMARTedit. X’s indicate users that could not complete the task using
SMARTedit. The figure suggests that most users were able to benefit from using the system
as they gained practice with it. Recall that none of the users had used the system prior to
the commencement of this study.

We also obtained user feedback in the form of responses to a questionnaire, summarized
in Table 3. The feedback was quite positive. We asked users to rate (on a scale of 1 to
5, 5 being the best) SMARTedit’s helpfulness in accomplishing the tasks, SMARTedit’s
usability, and whether they would use the system again. As the table shows, participants
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Table 3. User feedback on the SMARTedit system. Each user rated SMARTedit on a scale of 1 to 5, 1 being
the worst and 5 the best. The first question asked the user to rate SMARTedit’s helpfulness in accomplishing the
tasks, 5 being “very helpful”. The second question rated SMARTedit’s usability, 5 being “easy to use”. The final
question rated whether the user would use SMARTedit again, 5 being “yes, absolutely”.

Question User 1 User 2 User 3 User 4 User 5

Helpful? 4 4 4 4 5

Usable? 4 4 3 2 3

Use again? 4 5 4 5 5

found SMARTedit helpful and would use it again. One user wished he had had SMARTedit
at work, saying “this would have been a nice thing to have.” Others called it “cool” and
“clever.” Another noted the small number of user actions necessary to finish the task with
SMARTedit and said, “Four keys and nine mouse clicks. I like that!”

The time saved by using SMARTedit on a task depends on the number of iterations in
the task; one expects the savings to increase with the number of iterations. We averaged
the time savings across all users for each task; figure 7(a) shows the average time savings
on a task versus the number of iterations in the task. We fit a line to these points, obtaining
r2 of 0.97. The figure confirms our intuition, and indicates that for novice users, the break-
even point (the number of iterations for which the total time spent operating SMARTedit
equals the time spent performing the task manually) is about 15 iterations. We observed
that participants became more proficient in using the system over the course of the study,
so these results may be skewed by a practice effect.

Since all of our user study participants were untrained in the use of SMARTedit, much
of their time was spent learning how to operate the system. To provide an alternative view
of SMARTedit’s usefulness, two experienced SMARTedit users (the first two authors)
performed the smartedit-results task both with SMARTedit and without, recording the time
spent per iteration. Figure 7(b) shows the cumulative time spent performing each iteration
of the task for each user in both situations. Both users operated SMARTedit naturally:
they demonstrated a single iteration, stepped through the second iteration while correcting
SMARTedit’s wrong guesses, and ran the program uninterruptedly starting from the third
iteration. The uninterrupted run steps slowly through the first few actions of the learned
program, to give the user time to observe that it’s behaving correctly, then decreases the
artificial delay between steps until it eventually runs at full speed. As shown in the figure, it
took longer to teach SMARTedit than to perform the task manually on the first two iterations,
but the total time was much faster with SMARTedit than without. The break-even point is 5
iterations. While this result may not generalize to tasks of arbitrary complexity, it suggests
that the break-even point decreases as a user gains experience with the system.

The study indicated that SMARTedit clearly needs improved usability before it gains
acceptance. Users found its primary failing to be the lack of a “multi-level undo” facility;
once a user wrongly confirms one of SMARTedit’s guesses by stepping through it to the
next action, SMARTedit’s version space could collapse, and users have no choice but to
retrain the program from scratch. Improving SMARTedit’s usability is a clear direction for
future work, as is performing more extensive user studies.
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Figure 7. (a) Average time savings across all users for each task versus number of iterations in the task.
(b) Cumulative time required for experienced users G and H to complete successive iterations of the smartedit-
results task with SMARTedit and without, as a function of the number of iterations in the task.

7. Related work

Our work draws on a number of research areas, incorporating ideas from both human-
computer interaction and artificial intelligence. In this section, we summarize related work
in programming by demonstration, adaptive user interfaces, plan recognition, information
extraction, and machine learning.

7.1. Programming by demonstration for text-editing

Other researchers have investigated programming by demonstration in the text-editing do-
main. Unlike most previous text-editing PBD systems, SMARTedit uses a formal machine
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learning technique to describe the generalization that is performed by the system. Mo (1989)
describes the TELS system that records high-level actions similar to the actions used in
SMARTedit, and implements a set of expert rules for generalizing the arguments of each of
the actions. TELS also uses heuristic rules to match actions against each other in order to
detect loops in the user’s demonstrated program. However, TELS’s dependence on heuristic
rules to describe the possible generalizations makes it difficult to understand the hypothesis
space clearly, as well as to imagine applying the same techniques to a different domain such
as spreadsheet applications.

Nix (1985) describes the Editing by Example (EBE) system. EBE generalizes not from
recorded actions, but from the input/output behavior of the complete demonstration. EBE
attempts to find a program that can reproduce the observed difference between the ini-
tial and final state of the text editor. In this respect, SMARTedit is a refinement of EBE
that uses not only the initial and final state, but intermediate states as well. SMARTedit’s
approach has the drawback that it is sensitive to the order in which the user chooses to
perform actions, but on the other hand it makes use of more information than EBE is
given, and so SMARTedit is able to learn programs for more complex text transformations
than EBE.

Masui and Nakayama (1994) describe the Dynamic Macro system for recording macros
in the Emacs text editor. Dynamic Macro performs automatic segmentation of the user’s
actions—breaking up the stream of actions into repetitive subsequences, without requiring
the user to explicitly invoke the macro recorder. Dynamic Macro performs no generalization,
and it relies on several heuristics for detecting repetitive patterns of actions.

Maulsby and Witten’s Cima system (1997) uses a classification rule learner to describe
the arguments to particular actions, such as a rule describing how to select phone numbers in
the local area code. (SMARTedit is able to learn a program to select all but one of the phone
numbers in the Cima task given a single demonstration. The anomalous phone number lacks
a preceding area code, and is also difficult for Cima to classify correctly.) Unlike other PBD
systems, Cima allows the user to give “hints” to the agent that focus its attention on certain
features, such as the particular area code preceding phone numbers of interest. However, the
knowledge gained from these hints is combined with Cima’s domain knowledge using a set
of hard-coded preference heuristics, unlike SMARTedit’s clean framework for incorporating
knowledge. As a result, it is unclear exactly which hypotheses Cima is considering, or why
it prefers one over another. In SMARTedit, these types of hints could be used to bias the
probabilities on its different hypotheses.

7.2. Programming by demonstration in other domains

Many PBD systems have been discussed in the literature, in many domains other than text-
editing; Cypher (1993) and Lieberman (2001) present overviews of the field. Witten (1995)
surveys previous attempts to tie together programming by demonstration and machine
learning.

In prior work (Lau & Weld, 1999), we formalized PBD in the email domain as an
inductive learning problem using both a version space approach as well as an inductive
logic programming approach. Compared to our previous work, the version space algebra
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framework described in this article combines a more expressive and flexible bias with a
more natural and straightforward domain representation.

Early work that formalized PBD as learning functions to transform application state
or data includes Andreae’s NODDY (1984) and Halbert’s SmallStar (1993). Lieberman’s
Tatlin system (1998) infers user actions from observed application state changes. Tatlin
learns how to cut and paste data from a calendar application to rows in a spreadsheet.
Lieberman also discusses the problem of constructing appropriate data descriptions for
the objects manipulated by the PBD system, such as “the window the user clicked on” or
“the window named Mail”; perhaps the most important aspect of SMARTedit’s learning
component is its ability to infer the correct data description from examples.

The APE system (Ruvini & Dony, 2000) automates repetitive sequences of actions in a
visual programming environment. It uses two learning algorithms: a classification learner, to
determine whether (given the user’s recent actions) the user is about to perform a repetitive
task; and a concept learner based on candidate elimination (Mitchell, 1982) to generalize
repetitive tasks from positive examples. Compared with our work, APE explores a differ-
ent point in the programming by demonstration space. Our work explores learning richer
program structures, such as nested loops, but requires explicitly segmented traces to do so.
Our hypothesis space for actions is richer and contains more forms of generalization. On
the other hand, APE performs non-supervised data mining on a trace of the user’s actions,
which is a direction we have only begin to pursue in our work (e.g., what we have called
startless programs).

Bauer and Dengler (1999) and Bauer, Dengler, and Paul (2000) present TrIAs, a PBD
system for learning wrappers for the purpose of training an information integration system.
TrIAs is designed around a collaborative user interface in which a user teaches the system
how to extract information from a web site by labelling a single example page. Unlike
SMARTedit, TrIAs performs no generalization from multiple examples, instead using only
heuristics and user hints to choose a hypothesis that is consistent with each part of the exam-
ple. In comparison, SMARTedit has a well-defined hypothesis space, and the verion space
framework clearly shows how each new bit of evidence affects the generalization process.

Paynter (2000) presents Familiar, a system for cross-application PBD on the AppleScript
platform. Familiar employs a combination of machine learning algorithms to identify repet-
itive sequences of actions in two phases: first it identifies a repetitive sequence of action
types (ignoring the parameters), and then it extrapolates the parameters for each of the
actions. Within each of these stages, Familiar employs a set of heuristic rules to select the
best hypothesis from among the guesses generated by the collection of recognizers. Un-
like our work, which maintains the set of all consistent hypotheses along with associated
probabilities, Familiar generates only a single hypothesis for the data. When an example is
received that conflicts with the current hypothesis, Familiar must discard its hypothesis and
re-train from the beginning.

7.3. Adaptive user interfaces

PBD is only one component of an adaptive user interface. Rich and Sidner (1997) describe
the COLLAGEN collaborative agent system. COLLAGEN employs a hierarchical plan
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library structured according to a user’s goals and intentions, and uses it to model user tasks.
Lesh, Rich, and Sidner (1999) apply plan recognition in COLLAGEN to infer a user’s task
from her actions. Using the task model, COLLAGEN enters into a collaborative discourse
with the user to help her achieve shared goals. In our system, the collaborative task is to
teach SMARTedit how to perform a particular repetitive edit. Although beyond the scope of
this paper, we have also constructed a mixed-initiative interface for SMARTedit that could
reduce user effort during a training session (Wolfman et al., 2001).

Researchers such as Maes and Kozierok (1993), Schlimmer and Hermens (1993), and
many others have considered complementary approaches to adaptive interfaces, using ma-
chine learning techniques to predict the user’s next actions. Space precludes a detailed
discussion of the considerable work in this vein.

7.4. Plan recognition

We view programming by demonstration as a special case of the plan recognition problem.
Plan recognition (Kautz & Allen, 1986; Charniak & Goldman, 1993; Vilain, 1990; Pollack,
1990) aims to understand an agent’s plan or goal based on a partial observation of the agent’s
behavior. In an intelligent user interface, this knowledge may then be used to predict the
agent’s further actions or suggest more optimal methods for accomplishing the goal.

The issue of whether programs are plans has been debated at length (for example, see Agre
& Chapman, 1990); however, for the purposes of this section we assume they are equivalent:
a sequence of actions. Thus PBD can be viewed as the problem of observing a prefix of
these actions, and generalizing to the complete plan.

Plan recognition systems typically require the use of a plan library: the set of plans
from which the agent’s target plan is assumed to be drawn. This plan library defines the
plan recognizer’s bias, or the space of hypotheses considered during the search. Kautz
and Allen (1986) employ a plan library in the form of a hierarchy of plans connected via
abstraction and decomposition relationships.

A second approach to building a plan library has been to represent plans as sentences
in a grammar and phrase the plan recognition problem as parsing in a grammar (Vilain,
1990; Pynadath & Wellman, 2000). The parsing-based approaches suffer from the drawback
that plans must be totally ordered, which may cause an exponential increase in the size of
the plan library (to represent all total orderings over a partially ordered plan).

In order to scale to large domains, a third approach has investigated automatic construction
of the plan library, such as proposed by Lesh (1997, 1998) and Lesh and Etzioni (1995,
1996). They point out the similarities between goal recognition and concept learning: given
a sequence of actions, find the goal or goals consistent with the observations. Our approach
falls into this category. The basic idea is to provide a set of primitives and a set of rules
for composing together the primitives to construct hypothesis space implicitly. Related to
automatic construction is the idea of efficient search through this space.

The choice of the plan library representation influences the types of plans that may
be recognized by the system. In the Kautz and Allen representation, arbitrary plans may
be represented; however, manual construction of the plan library limits the scalability of
this approach. On the other hand, automatic construction of the library can scale up to
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larger domains, but at the cost of reduced expressiveness. Our system is only capable of
recognizing repetitive plans. However, many previous plan recognition systems assume that
the agent is acting optimally, and only include optimal plans in the library. In contrast, we
make no assumptions about the agent’s behavior; our system is capable of recognizing the
user’s intent, whether or not the user performs optimally.

Another difference between the version space algebra approach and previous plan recog-
nition systems is that we maintain the set of plans consistent with the observations, rather
than finding a single consistent plan; and we allow probabilistic execution before the version
space converges to a single plan. The Kautz and Allen approach produces the set of consistent
plans in which the number of top-level actions is minimized, but provides no way to choose
among them. In contrast, Charniak and Goldman (1991) present a probabilistic method for
deciding between plan hypotheses, but do not address the problem of determining which
plans are consistent with the data. Lesh and Etzioni maintain the set of all consistent goals,
and support execution before convergence in special cases (when all goals in the version
space are necessary or sufficient for the target goal); however, they provide no general
mechanism for probabilistic execution or introduction of prior probabilities on hypotheses.

Our approach can be divided into three phases:

– Translation: converting from a sequence of low-level keypress and mouse actions to a
sequence of state changes representing high-level actions;

– Learning: inducing high level actions from multiple examples of the state changes asso-
ciated with each action; and

– Recognition: finding a repetitive plan consistent with the induced actions.

While one could do plan recognition over the low-level actions (such as sequences of
cursor key presses), we believe that our method of abstracting away from the exact sequence
of low-level actions leads to a representation closer to the user’s model of the application,
and thus more robust and understandable plans.

Most previous plan recognition systems perform only the third phase: recognizing a plan
given a sequence of actions. In our work, the third phase is trivial: once the actions are
known, the plan is merely a repetition of the sequence of actions. Instead, we have focused
our efforts on the first two phases.

Lesh and Etzioni’s approach is the most similar to our work; we compare the two systems
in more detail in the remainder of this section. The BOCE (Lesh & Etzioni, 1996) system
uses version spaces for goal recognition. Actions are represented in a STRIPS-like formal-
ism (Etzioni et al., 1992), and a goal is a conjunction of literals that must be established by
a plan (legal sequence of actions5). A goal is consistent with a sequence of observed actions
if there exists a pseudo-optimal plan6 containing those actions that, when executed in some
state, asserts the goal. While BOCE represents goals explicitly in a predicate description
language, our approach has no explicit goal representation.

Both BOCE and our approach use a version space representation of an implicit plan
library, but the elements of each version space are very different. BOCE’s version space
contains goals ordered by generality, where each goal is a conjunction of literals.7 In
contrast, our approach constructs a version space of plans where each plan is represented
as a function from state to state. Our version space algebra has a number of benefits over
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a regular version space: other partial orderings, not necessarily generality; representation
of version spaces with “holes”; combination of boundary-represented version spaces with
enumerated version spaces in the hierachy; the join operator and decomposition of the target
function into simpler components.

7.5. Wrapper induction and information extraction

Another body of related work is on techniques for wrapper induction and information
extraction (Kushmerick, Weld, & Doorenbos, 1997; Ashish & Knoblock, 1997; Cowie
& Lehnert, 1996; Hobbs, 1992). Wrapper procedures are programs that scan over semi-
structured text, such as HTML tables, in order to extract tuples of information, such as
names and phone numbers. Wrappers make use of certain regular features in the text,
such as HTML opening and closing tags, to uniquely identify the location of each item of
interest. Wrapper induction is the problem of learning such wrappers from labelled training
examples. These wrapper procedures are very similar to the types of procedures learned
by SMARTedit. Specifically, the language we have defined for expressing text-editing
programs could be used (with few changes) to express programs for wrapper induction. In
fact, several of the scenarios used to evaluate SMARTedit are drawn directly from the RISE
repository of information extraction tasks (Muslea, 2000).

Kushmerick (2000) defines a variety of wrapper classes of increasing functionality. Kush-
merick’s LR wrapper class denotes a set of programs that is a subset of the class of single-
loop programs with fixed-length loop bodies, and his HLRT wrapper class is equivalent to
a program with a block of statements to find the head, a single loop with a fixed-length loop
body (the LR component), followed by a block of statements to identify the tail. Our work
has identified and shown how to learn these classes of programs, as well as more expressive
programs containing nested loops within the single outer loop.

Muslea, Minton, & Knoblock (2000) describe the use of selective sampling (a form of
active learning) using multiple views to pick the training example that is likely to cause
the version space to converge the most quickly. A promising direction of future work is
to apply active learning to SMARTedit; we have already taken some steps towards this
goal (Wolfman et al., 2001).

7.6. Machine learning

Many researchers have extended version spaces in various ways. For example, Hirsh (1991)
studies the algebra of boundary-set representable version spaces, and Hirsh, Mishra, and
Pitt (1997) propose maintaining version spaces without boundary sets. We have extended
Hirsh’s work beyond concept learning to complex-function learning by allowing any partial
order, defining the join operator, and supporting unions that are not represented by boundary
sets.

A different extension of version spaces has been proposed by VanLehn and Ball (1987),
for inducing context-free grammars from examples. Since generality is undecidable for
context-free grammars, their work approximates the generality relation using an alternative
partial order.
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Subramanian and Feigenbaum (1986) describe version space factorization, which is very
similar to our version space join. Rather than using the factored version space to express
more complex hypotheses as our framework supports, however, they use factorization within
the concept-learning framework to choose a sequence of instances that speeds convergence
of the version space.

Explanation-based learning (EBL) is another class of machine learning algorithms that
generalizes from few examples with the help of domain knowledge. For example, Shavlik &
DeJong (1987) describe an explanation-based learning system that generalizes the concept
of number. EBL is similar to version space algebra in that it has been used in learning for
problem-solving, and is capable of learning from a single example. However, EBL is more
limited in that it assumes a sound and complete domain theory, which is seldom available
in practice. While EBL learns by reformulating a single domain theory, the version space
algebra also supports efficient exhaustive search through a range of possible theories. In
this respect it is also related to inductive logic programming (Muggleton, 1992). While
most ILP systems maintain and return only a single theory, the version space algebra
maintains all theories efficiently. In prior work (Lau & Weld, 1999), our TGENFOIL system
employed the FOIL ILP algorithm to learn programs in the email domain. Although we
have not directly compared the two approaches on the same domain, we have found that
the programs produced with version space algebra are generally easier to understand, and
map more directly to a natural domain representation, than did the programs learned with
TGENFOIL.

8. Future work

We are currently investigating several extensions to the research described in this article.
Our future work falls roughly into three categories: application-specific extensions, version
space algebra extensions, and consideration of new domains.

While the bias defined by SMARTedit’s version space provides a useful set of text-editing
actions, it is desirable to increase the expressiveness of SMARTedit’s instruction language.
In addition to extending the set of version spaces used in SMARTedit, we plan to investigate
methods for automatically inferring loop termination conditions, biasing probabilities ac-
cording to user preference or file type, and adding conditional statements to the instruction
language supported by SMARTedit.

With an increase in expressiveness comes an increase in the size of the search space and the
number of required training examples. As the search space increases, efficiency becomes
a concern. The version space may reach a size where a complete search is not feasible.
One direction of future work is to investigate means of combining boundary-represented
version spaces with heuristically-searched spaces in order to efficiently learn procedures.
In addition, we may need to investigate the use of sampling in order to efficiently execute
such large version spaces. We may find it necessary to extend our algebra with additional
operators, such as intersection.

We foresee several methods for reducing the number of required training examples in the
presence of a large search space. First, we plan to investigate techniques for version space
revision, or dynamically weakening the bias to include less-likely hypotheses if the stronger
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initial biases fail. Second, we are actively pursuing methods including active learning and
collaborative interfaces with the intent of reducing the number of required training examples.
See recent work (Wolfman et al., 2001) for preliminary results in this area.

One assumption we have made in this work is the availability of pre-parsed examples
that identify which part of the example is used to update each version space. For instance,
an example for the RowCol version space can be parsed into its row and column com-
ponents, and each used to update the appropriate version space. An area for future work
is to investigate how we might automatically learn a decomposition of the version space
into subspaces, when this decomposition is not given a priori. For example, in a speech
recognition problem we might have a version space for each word, but we generally do not
know where each word begins and ends. A related problem is that of credit assignment:
deciding which version spaces should be modified in response to a given example, when
the example can be parsed in more than one way.

Another assumption we have made is that the examples are noise-free. As mentioned
in Section 3.5, one solution to deal with noise is to reduce the probability of inconsistent
hypotheses, rather than eliminating them entirely from the version space. We will need
to investigate mechanisms for efficiently maintaining such a probabilistic version space.
Norton and Hirsh (1992) present an alternative method, where rather than maintaining a
single version space containing potentially-inconsistent hypotheses, they maintain a set of
version spaces, each of which is consistent with some interpretation of the data.

While the version space algebra has proven useful in the text-editing domain, an open area
of future work is applying the version space algebra to other machine learning domains,
either in support of programming by demonstration for a given domain, or in another
application unrelated to the user interface. Another direction for future work is to empirically
investigate alternative domain encodings, either for the text-editing domain or a different
one.

Many of the version spaces used in SMARTedit are not application-dependent; they form
the basis of a library of version spaces that can be ported directly to a new domain. Future
work will expand this library to contain a larger variety of application-independent version
spaces.

9. Conclusion

In this article, we describe a framework for complex-function learning called version space
algebra, and apply it to programming by demonstration in the text-editing domain. We make
the following contributions:

– We extend version spaces to complex-function learning. Efficient maintenance of a ver-
sion space requires only a partial order, not necessarily the generality partial order.

– We describe a version space algebra for combining smaller, more restrictive version
spaces into complex spaces. We define the union, join, and transformation operators for
combining version spaces, and show that these operators preserve PAC learnability. We
present a probabilistic framework for reasoning about the probability of each hypothesis
in the composite version space.
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– We apply the version space algebra to the problem of programming by demonstration,
and describe the implemented SMARTedit system for PBD in the text-editing domain.
We have also constructed a library of reusable component version spaces that may be
applied to other domains.

– We have experimented with a number of user interfaces and version spaces for learning
single-loop programs from traces with varying amounts of segmentation information, as
well as learning programs with multiple nested loops.

– We validate our approach experimentally using a range of text-editing scenarios, including
bibliographic editing tasks. We show that a program that generalizes correctly for each
of these scenarios can be learned quickly in as few as one or two training examples. We
report on an informal user study that confirms SMARTedit’s usability and usefulness, and
show how SMARTedit helps users perform tasks more quickly and with fewer actions.

Appendix A: SMARTedit version spaces

In this section, we summarize the version spaces used in the full-segmentation SMARTedit
system, organized roughly in order of appearance starting from the target space Program.

Program The target version space. A Program consists of a join of a fixed number of
Action version spaces. Functions in this space map from the initial application state to the
state after one full iteration of the program has been performed. (Note that the learning
process requires supplemental information in the form of a trace of intermediate program
states.) The number of component version spaces is lazily determined from the first
training example.

Action A union of all the types of text-editing actions known to SMARTedit: Move,
Insert, Delete, Select, Cut, Copy, Paste, DeleteSelection. Functions in this space map
from one application state to another.

Move A transformation of a Location version space. Functions in this space map from
one application state to another. Functions in the Location space map from an input state
to a cursor position. The τ−1

o transformation converts from the cursor position to a state
in which the cursor is positioned at that location.

Delete A transformation of a join of two Location spaces specifying the left and right
endpoints of a region. Functions in this space map from one application state to another.
Functions in the join of two Locations map from an input state to a pair of locations. The
τ−1

o transformation converts a pair of locations to a state in which the text between those
locations has been deleted.

Insert A transformation of a union of three version spaces: ConstStr, StrNumStr, and
IndentStr. Functions in this space map from one application state to another. The τo

transformation for the ConstStr component converts the output state into the string that
is inserted between the input and output states. The τ−1

o transformation converts a string
into a state in which the string has been inserted into the text buffer at the current cursor
position.

ConstStr Atomic version space of functions that accept no input and return a constant
string.
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StrNumStr A join of three version spaces: ConstStr, Number, and ConstStr. Functions
in this space map from an input state to a string. The τo transformation extracts the
string inserted between the input and output state, and splits it into three substrings: a
non-numeric string prefix, a number, and the remainder of the string. Each string is used
to update the associated version space. The τ−1

o transformation concatenates the strings
returned by each of the three component version spaces.

Number A union of two LinearInt version spaces. Functions in this space map from the
input state to a string representing a number. Functions in the component spaces map
from an integer to an integer. The τi and τo transformations extract the row number and
the iteration number from the input and output states, respectively; row and iteration
number are used to update the two component version spaces. The τ−1

o transformation
converts an integer into its string representation.

LinearInt Atomic version space of functions from integer to integer of the form f (x) =
x + C .

IndentStr A join of two version spaces: Identity and ConstStr. Functions in this space map
from the input state to a string. The τo transformation extracts the string inserted between
the input and output state, and splits it into two substrings: a sequence of whitespace
tokens, and the remainder of the string. The τi transformation for the Identity space
extracts the amount of whitespace indentation on the current line of the input state. The
two whitespace strings are used to update the Identity space, and the remainder of the
string updates the ConstStr space. The τ−1

o transformation concatenates two strings and
returns a single string.

Identity Atomic version space containing at most a single function: f (x) = x .
Select A transformation of a Location version space. Functions in this space map from

one application state to another. Functions in the Location space map from an input state
to a cursor position. The τ−1

o transformation converts from the cursor position to a state
in which the selection spans the region between the cursor position in the input state and
the new cursor position.

Cut Atomic version space representing a cut action.
Copy Atomic version space representing a copy action.
Paste Atomic version space representing a paste action.
DeleteSelection Atomic version space representing the action of deleting the selected text

without copying it to the clipboard.
Location A union of several verion spaces: FindFix, WordOffset, CharOffset, and Row-

Col. Functions in this space map from an input state to a location.
FindFix A union of several version spaces: two FindPrefix spaces and two FindSuffix

spaces. A token typing τi transformation is applied to one each of the FindPrefix and
FindSuffix spaces. This transformation converts the literal sequence of tokens in the text
of the input state into a sequence of token types. Token types include lowercase letter,
uppercase letter, whitespace, digit, and punctuation.

FindPrefix Atomic version space whose functions map from an input state to a location.
The new location is the position at the end of the next occurrence (relative to the position
in the input state) of a sequence of tokens. Each function in this space reflects a different
sequence of tokens.
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FindSuffix Atomic version space whose functions map from an input state to a location.
The new location is the position at the beginning of the next occurrence (relative to the
position in the input state) of a sequence of tokens. Each function in this space reflects a
different sequence of tokens.

WordOffset A transformation of a LinearInt space. Functions in this space map from an
input state to a location. The τi transformation converts from the input cursor position
to an integral word offset relative to the beginning of the text. The τo transformation
converts the output cursor position similarly. The τ−1

o transformation converts from an
integer representing a word offset to a position in the text.

CharOffset A transformation of a LinearInt space. Functions in this space map from an
input state to a location. The τi transformation converts from the input cursor position
to an integral character offset relative to the beginning of the text. The τo transformation
converts the output cursor position similarly. The τ−1

o transformation converts from an
integer representing a character offset to a position in the text.

RowCol A join of two version spaces: Row and Column. Functions in this space map
from the input state to a cursor position. The τi and τo transformations for Row extract the
row value of the cursor position in the input and output state, respectively. For the Col-
umn component, the transformations extract the column value. The τ−1

o transformation
converts a row and column value into a cursor position.

Row A union of two version spaces: AbsRow and RelRow. Functions in this space map
from a row value to a row value.

AbsRow A transformation of a ConstInt version space. Functions in this space map from
nothing to a row value. The τo transformation converts from a row value to an integer.
The τ−1

o transformation converts from an integer to a row value.
RelRow A transformation of a LinearInt version space. Functions in this space map from

a row value to a row value. The τi and τo transformations convert from the row value of
the input/output states to integers, and the τ−1

o transformation converts from an integer
to a row value.

AbsCol A transformation of a ConstInt version space. Functions in this space map from
nothing to a column value. The τo transformation converts from a column value to an
integer. The τ−1

o transformation converts from an integer to a column value.
RelCol A transformation of a LinearInt version space. Functions in this space map from a

column value to a column value. The τi and τo transformations convert from the column
value of the input/output states to integers, and the τ−1

o transformation converts from an
integer to a column value.

Appendix B: SMARTedit scenarios

In this section we provide a brief description of each of the scenarios used to test the
SMARTedit system. Although some of the scenarios are artificial, many are derived from
actual repetitive tasks faced by SMARTedit users.

OKRA Given a web page containing a list of names, email addresses, scores, and the
date the name was entered, select each of those items in turn for each name on the page.
This information extraction task comes from the RISE repository.
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addressbook Convert single-line addresses into a multi-line format, suitable for printing
on a mailing label.

bibitem-newblock Convert a list of bibliographic entries from BibTeX intermediary for-
mat to human-readable form.

bindings For each call to the bind() function in a Python source code file, add a second
function call immediately following the bind whose first argument is the first argument
to the bind. Ensure that the inserted code preserves the indentation level on the previous
line.

bold-xyz Boldface the name of a company everywhere it appears on the web page, using
the HTML bold tags. The company name sometimes has a space between the two words
in the name.

boldface-word Boldface the word SMARTedit in a LATEX document.
c++comments Replace C++-style comments (//) with C-style comments (/* */),

assuming one comment per line of text.
citation-creation Automatically construct a citation for each bibliography entry, of the

form “[Hirsh, 1997]”. It should be extracted from the first argument to the \bibitem
command in each entry.

column-reordering Rearrange the columns in a structured text file containing co-
lumns separated by spaces. The contents of the first column become the last
column.

country-codes Extract (country, country code) tuples from an HTML page by converting
the information in an HTML table to a list of comma-separated values. This is the example
task for Kushmerick’s wrapper induction system (Kushmerick, 2000).

grades For a list of grades and students, one per line, delete the name of the student so
that only the grade remains.

html-comments Delete the HTML comments, including their contents, from a web page.
html-latex Convert HTML to LATEX format by escaping less-than and greater-than char-

acters into LATEX’s math mode.
indent-voyagers For plain text extracted from a web page, fix the indentation by removing

the extraneous spaces at the beginning of every line, and make the text wrap by removing
the newline at the end of each line of text.

latex-macro-swap Convert from LATEX’s \tt operator to a user-defined macro, by chang-
ing all occurrences of {\tt text} to \prog{text}.

mark-format In a Python script, change all occurrences of the statementoutstate.sel-
ection extent[?] to mark split(outstate.selection extent[?]), for any ex-
pression in place of the question mark.

number-fruits Number consecutively all the lines in the file using the format “i.”.
number-iterations Number consecutively all the lines in the file that have a pound sign

(#) at the beginning of the line.
outline For a file in Emacs outline format, number all the high-level section headers

consecutively starting from 1, and copy each numbered high-level section header to the
top of the file.

pickle-array Convert an array of numbers from one format (a Python pickled format) to
another.
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prettify-paper-info Given a text file with doubly-spaced lines indented to appear in the
middle of the page, remove the double spacing and the extraneous indentation such that
each line is flush with the left margin.

smartedit-results Convert from the results generated by SMARTedit’s scenario test har-
ness (whitespace-separated columns) into a LATEX table. Use the & character to separate
columns and end each line with two backslash characters.

subtype-interaction In a Python script, make each defined class inherit from a given base
class by adding the string “(Interaction)” before the first colon in a class definition.

xml-comment-attribute Reformat XML text so that commented-out elements are re-
placed with the uncommented element with the addition of an extra attribute.

zipselect Given a file containing address data, one address per line, copy each zip code
to the end of the file.
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Notes

1. A hypothesis h1 is more general than another h2 iff the set of examples for which h1(i) = 1 is a superset of
the examples for which h2(i) = 1.

2. In the interests of space, we provide only proof sketches of the theorems in this paper.
3. Future work will examine how to maintain the version space and associated probability distribution when

inconsistent hypotheses are assigned a very small probability.

4. The weight of a string of length i is e(−0.5∗(i−5))2
, and the weights of consistent hypotheses are normalized to

form probabilities.
5. More formally, a partially ordered set with causal links (Weld, 1994).
6. Every action in the plan must support some action in the plan or the goal. This requirement is weaker than

having the plan be minimal and contain no irrelevant actions; in particular, it allows redundant sensory actions.
7. Note that the use of a STRIPS-like language is essential, but many domains (such as text editing) may be

difficult to encode in this formalism.
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