
Recursive Functions of Symbolic Expressions
Their Computation by Machine, Part I

and

JOHX MCCAaTItY, Massachusetts Institute of Technology, Cambridge, Mass.

1 . I n t r o d u c t i o n

A programming system called LISP (for lASt Processor)
has been developed for the IBM 704 computer by the
Artificial Intelligence group at M.I.T. The system was
designed to facilitate experiments with a proposed system
called the Advice Taker, whereby a machine could be
instructed to handle declarative as well as imperative
sentences and could exhibit "common sense" in carrying
out its instructions. The original proposal It] for the Advice
Taker was made in November 1958. The main require-
ment was a programming system for manipulating ex-
pressions representing formalized declarative and irnpera-
live sentences so that the Advice Taker system could make
deductions.

In the course of its development the Lisp system went
through several stages of simplification and eventually
came to be based on a scheme for representing the partial
recursive functions of a certain class of symbolic expres-
sions. This representation is independent of the IBM 704
computer, or of any other electronic computer, and it now
seems expedient to expound the system by starting with
the class of expressions called S-expressions and the func-
tions called S-functions.

In this article, we first describe a formalism for defining
functions reeursively. We believe this formalism has ad-
vantages both as a programming language and as vehicle
for developing a theory of computation. Next, we describe
S-expressions and S-functions, give some examples, and
then describe the universM S-function apply which plays
the theoretical role of a universal Turing machine and
the practical role of an interpreter. Then we describe the
representation of S-expressions in the memmT of the
IBM 704 by list structures similar to those used by Newell,
Shaw and Simon [2], and the representation of S-functions
by program. Then we mention the main features of the
Lisp programming system for the IBM 704. Next comes
another way of describing computations with symbolic
expressions, and finally we give a recursive function in-
terpretation of flow charts.

We hope to describe some of the sylnbolie computations
for which LISP has been used in another paper, and also to
give elsewhere some applications of our reeursive function
formalism to mathematical logic and to the problem of
mechanical theorem proving.

184 C o m m u n i c a t i o n s o f t h e ACM

2. F u n c t i o n s an d F u n c t i o n Def in i t ions

We shMl need a number of mathematical ideas ar:d
notations concerning functions in general. Most of the
ideas are well known, but the notion of conditional e,~pre~'-
sion is believed to be new, and ihe use of conditional
expressions permits functions to be defined recursively in a
new and convenient way.

a. Partial Functions. A partial function is a funct on
that is defined only on part of its domain. Partial funetio:~s
necessarily arise when functions are defined by eomputa~
tions because for some values of the arguments t:he Pomp:>
ration defining the value of the function may not ter-
minate. However, some of our elementary functions wilt be
defined as partial functions.

b. Propositional Expres.s'ions and Predicates. A t)ropo~i-
tionM expression is an expression whose possible values
are T (for truth) and F (for falsity). We shall assume
that the reader is fanfiliar with the propositionM eom~ee-
lives A ("and"), V ("or") , and ~ ("not") , Typieai
propositional expressions are:

x < y

(x < y) A (b = e)

x is prime

A predicate is a function whose range consists of ih{:
t ruth values T and F.

e. Conditional Expressions. The dependence of truth
values on the vahtes of quantities of other kinds is ex-
pressed in mathematics by predicates, and the depende~ee
of t ruth values on other t ruth values by logical comxee-
~ives. However, the notations for expressing symbol (alE"
the dependence of quantities of other kinds on trutt~
vMues is inadequate, so that English words and phrases
are generMly used for expressing these depende~tces i:~
texts that, describe other dependences symbolically. I!'<~r
example, the function Ix I is ustmlly defined in words.

Conditional expressions are a deviee for expressing the
dependence of quantities on propositional quantities. :\
conditional expression has the form

(p : - + e l , - . - , p ~ --+ e , ,)

where the p's are propositionM expressions and the e's are
expressions of any kind. I t may be read, "If p~ thexx <,

(

a~3d

zpre;~. :

!i

,viii ~'e :

O / l l / e b

~yp e~l

o~ the

[

mde~a-
collnf¢ ~-

h tr~t

lly F,:,~
worg!

ities..'~

e e 's ~?~ ~

tbet~ el,

,iherwise if p2 then e2, - - • , o therwise if p,, then e,, ," or

..p~ y/el(Is e3 , " " , P,, yields e,, . "
We now give the rules :for de te rmin ing whether the value

r,f !p, -- ' e , , . , ' , p,, - - ' e ,) is defined, and if so what its
value is. Examine the p's f rom left. to right. If a p whose
valu~ is T is eilcountered before any p whose vahm is
~mdefilied is eneom~tered, then the value of the conditional
,xpressi(m is the value of the corresponding e (if this is
left ned). If airy undefined p is ene(:mntered before a true p,
.r if all p's are false, or if the e corresponding to the first
true p is undefined, then the v a l u e of the conditional ex-
pression is undefined. We now g ive examples.

(t < 2 - - ~ 4 , 1 > 2 - - + 3) = 4

(2 < 1--~ 4, 2 > 1 - ~ 3 , 2 > 1 - -~2) = 3

(,2 < 1- ->4, T - ~ 3) = 3

0 T (2 < 1 - , 6 , -~3) =3

(1
(2 < 1 - - , 3 , T - - , 0) is n l l d e [i l l e d

(2 < I --~ 3, 4 < 1 --~ 4) is undefined

Some of tile simplest app l ica t ions of eonditionM expres-
sia~s are in giving such defini t ions as

x = (x < 0 - - , - x , i F - - ~ x)

san x ~ (x < 0 - - , - 1 , x == 0 - -~0 , T - ~ I)

d. Rccursive Function DefiniHons. By using conditionM
~:,xpressions we can, without circular i ty , define functions
,v formulas in which the def ined function occurs. For
{'xample, we wrile

l~: = (n = 0 - ~ 1, T - - * n . (n - 1)1)

When we use this formula to e v a l u a t e 0 [we get the answer
i: because of the way in which t he value of a conditional
expression was defined, the meaningless expression
~]- ~} - 1)! does not arise. T he eva lua t ion of 2! according
r, lhi:~ definition proceeds as fo l lows:

2! - (2 = 0 - * 1, T - - . 2 . (2 - 1):)

- 2 . 1 !

= 2 . (1 = 0 ~ L T - ~ 1.(1 -- 1)!)

= 2 - 1 - 0 !

= - . 1 . (0 = 0 - ~ I , T - ~ 0 . (0 - 1) !)

= 2 . 1 . 1

= 2

We now give two other appl ica t ions of recursive func-
tion definitions. The greatest c o m m o n divisor, gcd(m,n),
of ~wc, positive integers m and n is computed by means of
the Euclidean algorithm. This a lgor i thm is expressed by

the recursive funct ion defirfition:

ged(m,n) = (In > n --, ged(n ,m) , r em(n ,m)

= 0 -+ m, T --* ged (r em(n ,m) ,m))

where rein(n, In) denotes the remainder left when n is
divided by m.

The Newtonian algorithm for obtaining an approximate
square root of a number a, s tar t ing with an initial approxi-
mat ion :v and requiring that an acceptable approximat ion
y satisfy l y 2 -- a I < e, m a y be written as

sqrt(a, x, ~)

1 (x + ~) e)) = (Ix ~ - a I < e - - , x , T - ~ s q r t (a ,~ x '

The simultaneous reeursive definition of several func-
tions is also possible, and we shall use such definitions if
they are required.

There is no guarantee tha t tile computa t ion determined
by a reeursive definition will ever terminate and, for
example, an a t t empt to compute n[from our definition
will only succeed if n is a non-negative integer. I f the com-
putation does not terminate, the function mus t be regarded
as undefined for the given arguments.

The propositional connectives themselves can be de-
fined by conditional expressions. We write

p / ~ q = (p --~ q, T --~ F)

p V q = (p -~ T, T -* q)

~-~p = (p - ~ F , T - - ~ T)

p D q = (p-~q, T-~T)

I t is readily seen that the r ight-hand sides of the equa-
tions have the correct t ru th tables. If we consider situa-
tions in which p or q ma y be undefined, the connectives
/~ and V are seen to be; noncommutat ive . For example if
p is false and q is undefined, we see tha t according to the
definitions given above p A q is false, but q A p is unde-
fined. For our applications this noncommuta t i v i t y is
desirable, since p /~ q is computed by first comput ing p,
and if p is false q is not computed. :If the computa t ion for
p does not terminate, we never get around to comput ing q.
We shall use propositional connectives in this sense here-
after.

e. Functions and Forms. I t is usual in m a t h e m a t i c s - -
outside of mathemat ica l log ic - - to use the word " funct ion"
imprecisely and to apply it to forms such as y~ -V x. Be-
cause we shall later compute with expressions for functions,
we need a distinction between functions and forms and a
notat ion for expressing this distinction. This distinction
and a notat ion for describing it, from which we deviate
trivially, is given by Church [3].

Let f be an expression tha t stands for a funct ion of two
integer variables. I t should make sense to write f (3 , 4) and
the value of this expression should be determined. The
expression y~ + x does not meet this requirement;

C o m m u n i c a t i o n s o f t h e A C M 185

i '?i ¸ ¸ ¸ ¸ •

~!i iilili i :~i

,!~i i? ,ii!~
i S, ~i !ii ~ ~ ~

!i ~ii i!ii~! ~ i i
ii ii? !il ,

;i:+

ii

~:~i i! ~ii'~ ~ :i i~ I

i i? i!~T i~ '

y~ + x(3, 4) is not a convent ional no~ati(m, and if we
a t t e m p t e d to define it we would be uneert%ir~ whether its
valtte would tu rn out, to be i13 or 1.9. Church calls a,n expres-
sion like ye + x a form. A form can be eot~verted into a
f tmetion if we can determine the, eorrespondenee between
the variables occurring in the form and the ordered list of
a rguments of the desired function. This is accomplished
b y Church 's X-flotation.

I f ~;is ~ fo rm in variables xl , - . . , x~,, then X((xt , , . . ,
x,,), ~;) will t:>(:~ taken to be the function of n variables whose
value is de te rmned by subst i tu t ing the a rguments for lhe
var iables x~, • • - , x~, in tha t order in g and eva lua t ing the
result ing expression. For example, X((x ,y) ,ye+x) is a
funct ion of two variables, and X ((x, y) , y~ + x) (3, 4:) - 19.

The variables occurring in the list of variables of a X-ex-
pression are d u m m y or bound, like, variables of integrat ion
in a definite integral. T h a t is, we may change the names
of the bound w~riables in a function expression without
changing the vMue of the expression, provided tha t we
make tile same change for each occurrence of the wu'iable
and do not make two variM)les lhe same tha t previously
were different. Thus X((x,y) ,y" '+x) ,X((u,v) , v ~ + u) and
X((y, x) , x e + y) denote the same function.

We shall f requent ly use expressions in which some of the
w m a b l e s are bound by X's and others are not. Such art ex-
pression m a y be regarded as defining a function with
parameters . T h e unbound variables are (;ailed free vari-
ables.

An adequa te nota t ion t ha t distinguishes functions from
forms allows an unambiguous t r ea tnmnt of functions of
ftmetions. It, would involve too much of a digression to give
examples here, but we shall use functions with functions as
a rguments la ter in this report .

Difticulties arise in combining functions described by
X-expressions, or by arty other nota t ion involving variables,
because different bound variables m a y be represented by
the same symbol . This is called collision of bound vari-
ables. There is a nota t ion involving operators tha t are
called eombinators for combining functions wi thout the use
of variables, Unfor tuna te ly , the combina tory expressions
for interesting combinat ions of functions term to be lengthy
and unreadable.

f. Expressions for Recursive Functions. The X-notation is
inadequate for naming funct ions defined recursively. For
example, us ing X's, we can convert the definition

sqrt(a , x, e)

into

J. a
(ix" -- a I < e -~ x, T -~ sqrt(a , 2(x + x), e))

sqr t = X ((a , x , ¢) , (l x 2 -- a,l < e---+ x, T'---~

i a) +)))
sqr t (a, 2(x + x '

but the r igh t -hand side cannot serve as an expression for
the fimetion because there would be nothing to indicate

186 Comnumica t ions of the ACI~'I

!!!!

t ha t the refere~ee to sqrt within *he expression sloe :1 for ih~.
expression as a whole.

In order to be able to write expressio~s for I'eCursive
functions, we introduce another ~aotation label(~ ['~ &:..
notes the. expression g, provided tha t oeeurre~ces <)f ~}
within 8 are to be in terpre ted as referring to the expres,,:i<,
as a whole. Thus we can write

h~bel(sqrt, X((a, x, e), ([x'-' - a

< e --, x, rl' -~ sqrt (a, 1 (x a
2 ' + x)' ~):~)

a b ; a n a n l e f o r o l l r s (t l : ' t functiolt.
The symbol a ill label(a,g) is also bound thai is, i~ i;

m a y be altered sys temat ica l ly without changing the meal-
ing of the expression. I t behqvcs, differently from a \'ariaN~ { bound by a X, howe\ 'er.

3. R e e u r s i v e F u n c t i o n s o f S) m b o l i c Expres s ions 0

We shall first define a class of symbol ic express ~ s :i~
terms of ordered pairs and lists. Then we shall define five, g
e lementary functions and predicates, and build front them ~i'
by composition, condit ional expressions, and "(ru,sv~:,
definitions an extensive class of funct ions of which w~ ;
sh'dl give a number of examples. We shall lhen show how
these functions themselves can be expressed as syr~bol c
expressions, and we shah define a universal f t l l l C t i O t t ' (P] g ¢

tha t Mlows us to compute front the expression for a gi~t~
function its value for given arguments . Finally, we shal i
define some functions with functions as argume~ts :u~d ill'
giw; some useful examples.

a. A Class qf S!]nzbolic Expressions. We shall now <te{i~+~, {
the S-expressions (S st ' rods for symbol ic) . They are for ~ed :'
by ttsittg the special chara(.ters

)
(

and an infinite set of dist inguishable a tomic symbols. For
a tomic symbols, we shall use strings of capital l,atin lette~
and digits with single imbedded blanks. Ex'm@es *~f
a tomic symbols are

A
ABA
A P P L E P I E N U M B E R 3

There is a twofold reason for depar t ing from the usual
mathemat ieM pract ice of using single letters for atomic
synlbols. First, compute r programs frequent ly requir<'
hundreds of dist inguishable symbols thai, nmst be formed
f rom the 47 characters t ha t are pr intable by the IBM 7N
computer . Second, it is convenient to allow English wo~ds
and phrases to s tand for a tomic enti t ies for mnem(mic
reasons. The symbols are a tomic in the sense tha t any sui:-
s t ructure they m a y have as sequences of characters is it,
nored. We assume only that= different symbols cam be
distinguished.

t f o r iL

p>e:ssi>¢

)
{ :

e m < ~ .

m s

ma ~he!~
"eea ~:s ve :
'hi,e~i w, {e
,aow h*.:~'.~ :
s,:,,m}',~,ii~

w e :,t~atl

¢;

'e :forme~

i~ ̧
~iiii! ~'

be, is,
{ in Ieiter~
re'pitS :{

{

i" reqti~
i)e f0t:ff#

lish ~0r45

L a i ry SII~
'-~t e r s is if.-
is ,ca1

i

S-expressi(>ns are th.el~ def ined as follows:
1. M()mic symbols are S-expressions°
i?. If e~ alld e.., are S-expressions, so is (el 'e2).
Examples of S-expressions a r e

AB
(~v. B)
(t A B . O) - D)

An S-expression is then s i m p l y an ordered pair, the
wrms of which m a y be a tomic symbols or simpler S-expres-
si,ms. We can represent a tist of a rb i t r a ry length in terms
<>f S-expressions as follows. T h e list

(m~, me, "'" ,m, ,)

is represented by the S-express ion

(m t - i m p ' (. . . . (m , , - N [L) . . .)))

ilere N I L is an a tomic s y m b o l used to te rminate lists.
Si~me many of the symbol i c expressions with which we

de:~.l are conveniently expressed as lists, we shall introduce
a lis~ imtation to abb rev ia t e ce r ta in S-expressions. We have

1. im) siands for (r e . N I L) .
2. (m~ , . , . , m ,) s t ands for (ml . (. -. (m , . N I L) - . -)) .
'.~. (m , , - . - , m, , .x) s t a n d s :for (mr ' (- - - (m , , . x) . . .)).

Subexpressions can be s imi lar ly abbreviated. Some
examples of these a b b r e v i a t i o n s are

{(AB, C), l)) for ((A B - (C - N I L)) . (D . N I L))
(~ A , B) , C , I) . E) for ((A . (B - N I L)) . (C . (D . E)))

Nince we regard the express ions with commas as abbre-
viation,s for those not invo lv ing commas, we shall refer to
~hem all as S-expressions.

b. ["~mc~ions of S-expressions and the Expressions 77~at
t~q,'~,~ent Them. We now define a class of functions of
S-expressions. The express ions representing these ftmc-
~io~s are written in a conven t iona l functional notation.
tIowever, in order to c lear ly distinguish the expressions
rvpresenting fmmtions f rom S:expressions, we shall use
~quences of lower-case l e t t e r s for function names and
variabk~s ravaging over the s e t of S-expressions. We also
~ brackets and semicolons, instead of parentheses and
commas, for denoting the app l ica t ion of functions to their
arguments. T h u s we write

c a r [x]
car [cons [(A . B) ; x]]

I~ these M-expressions (meta.-expressions) any S-expres-
sions that oeetlr s t a n d for themselves .

e, The tflemerttary S:functions and Predicates. We intro-
<t~ee the following funct ions a n d predicates:

L atom. a tom [x] has t he value of T or F, accordingly
as x is an atomic symbol or no t . Thus

atom IX] = T
atom [iX.A)] = F

2. eq. eq Ix; 3'] is defined if "rod on ly if bo th x and y
are atomic, eq Ix; y] = T if x a n d y a r e the same symbol,
and eq Ix; Yl = F otherwise. T h u s

eq [X; X] = T
eq IX; A] = F
eq [X; (X .A)] is undefined.

3. ear. car Ix] is defined if "rod o n l y if x is not atomic.
car [(e~.ee)] = el . Thus car [XI is undef ined.

car [(X.A)I = X
ear [((X . A) . Y)] = i X . A)

4. edr. cdr Ix] is also defined when x is not atomic.
We have cdr [(< 'e~)l = < . T h u s edr {X] is undefined.

cdr [(X . A)] = A
edr [((X . A) - Y)] =: 55

5. cons. cons Ix; y] is defined fo r a n y x and y. We
have cons [e~ ; e~] = (e1.e~). T h u s

cons [X; A1 = iX. A)
cons [i X . A) ; Y] = ((X - A) . Y)

ear, cdr, a n d cons ,~i'e easily seen to sa t i s fy the relations

ear [cons [x; y]] = x
cdr [cons {x; y]] = y
cons [car [x]; cdr [x/1 = x, p rov ided t h a t x is not. atomic.

The nantes "ca r" and "cons" will come to have mne-
monic significance only when we discuss the representat ion
of the system in the computer. C o m p o s i t i o n s of car and cdr
give the subexpressions of a given express ion in a given
position. Composit ions of cons fo rm express ions of a given
structure out of paris. The class of f u n c t i o n s which can be
formed in this way is quite l imited a n d not v e r y interesting.

d. Recur,s@e S-functions. We gel; a n m c h larger class of
functions (in fact, all compu tab le func t ions) when we
allow ourselves to form new func t ions of S-expressions by
conditional expressions and recurs ive defini t ion.

We now give some examples of f u n c t i o n s tha t are de-
finable in this way.

1. ff [x]. The value of ff Ix] is t h e f i rs t a tomic symbol
of the S-expression x with the p a r e n t h e s e s ignored. Thus

ff [((A . B) . C)] = a

W e have

ff [x] = [atom [x] -~ x; T - -~ff [ear [x]]l

We now t rac t in detail the s t eps in t h e evaluat ion of
ff [((A . B) , C)] :

ff [((A . B) . C)]

= [atom [((A . B) . C)] - - ~ ((A . B) - C) ;

T - - ~ ff lear [((A . B) ' C) l l l

= iF "-+ ((A . B) . C) ; T -~f ' f [ear [((A - B) . C)]]]

= [T --~ t'f (ear I ((A.B)"C)111

C o m m u n i c a t i o n s o f t h e ACM 187

= ff [ear [((A . B) . C)]]

: ff [(A .B)]

= [atom [(A .B)] -+ (A . B) ; T --> ff [ear [(A.B)]]]

= [F + (A . B) ; T - ~ f f [eat" [(m.*{)]]]

= [T --+ff [car [(A.B)]]]

= ff lear [(A.B)]]

: ff [A]

= [atom [A] --~ A; T --+ ff [ear [A]]]

= [T ~ A; T --, ff [car [A]]]

= A

2. subst Ix; y ; z]. This funct ion gives the result of
subst i tut ing the S-expression x for all occurrences of the
a tomic symbol y in the S-expression z. I t is defined by

subst Ix; y; z] = [atom [z] --+ [eq [z; y] -+ x; T --~ z];

T + cons [subst Ix; y; ear [z]]; subst Ix; y; edr [z]l]]

As an example, we have

subst [(X . A) ; B; ((A-B)-C)] = ((A - (X . A)) - C)

3. equal [x; y]. This is a predicate tha t has the value
T if x and y are the same S-expression, and has the value
I v otherwise. We have

equal Ix; y] = [atom [x] /~ a t o m [y] /~ eq Ix; y]]

V [~-oatom [x] /~ ~ a t o m [y] /~ equal lear [x]; car [y]]

/~ equal [edr [x]; edr [yl]l

I t is convenient to see how the e lementary functions
look in the abbrevia ted list notat ion. The reader will
easily verify tha t

(i) ear [(ml , m2, . . . , m ,)] = ml

(i i) edr [(m , , m2, " " , m ~)] = (m 2 , . . " , m~)

(iii) cdr [(m)] = N I L

(iv) c o n s [m , ; (m 2 , ' " , m , ,)] = (m l , m ~ , ' " , m , ,)

(v) cons [m; NIL] = (m)

We define

null [x] = a tom [x] A eq [x; NIL]

This predicate is useful in dealing with lists.
Composit ions of ear and edr arise so f requent ly tha t

many expressions can be wri t ten more concisely if we

abbreviate

eadr [x] for ear [edr [x]],

eaddr [x] for ear [edr [edr [x]]], etc.

Another useful abbreviat ion is to write list [e~ ; e= ; • • • ; e~]
for cons [el ; cons [e2 ; • • • ; cons [e. ; N I L] - . •]]. This func-
t ion gives the list, (e , , . . - , e .) , as a hmet ion of its ele-

ments .

The following functions are useful when S-expressior~s
are regarded as lists.

1. append [x; y].

append Ix; y] = [mdI [x] -+ y; T ~ cons [ca," [x];

append [cdr [x]; y]]]

An example is

append [(A, B) ; (C, l) , E)] = (A, B, C, D,]i;)

2. among [x; y]. This predicate is t rue if the S-ex-
pression x occurs among the elements of the lis~ y. We have

among Ix; y] = ~--mull [y] /~ [equal [x; ear [y]]

V among [x; cdr D']]]

3. pair Ix; y]. This function gives the list of pairs of
corresponding elements of the lists x and y, We have

pair Ix; y] = [null [x] / \ null [y] -+ N I L ; -- ,atom [xl

/~ ~-~atom [y] -+ cons [lisg lear Ix]; ear [y]];

pair [edr Ix]; cdr [y]]]]

An example is

pair [(A, B, C) ; (X, (Y, Z), U)] = ((A, X) ,

(B, (Y, Z)), (C, C))

4. assoe [x;y]. If y is a list of the form ((u t , v,),
• • • , (m~, v~)) and x is one of the u's, then assoe [x; Yl is

the corresponding v. We have

assoc [x; y] = ecl[caar [y]; x] -+ eadar [y] ;

T --~ assoc Ix; ode [y}]]

An example is

assoe IX; ((W, (A, B)) , (X, (C, D)) ,

(Y, (E, F)))] : (C, ~))

5. sublis [x; y]. Here x is assumed to have the form
of a list of pairs ((u~, v ,) , • .. , (u, , , v ,)) , where the u%
are atomic, and y may be any S-expression. The value of
sublis [x; y] is tile result of substi tut ing each v for the cor-
responding u in y. In order to define sublis, we first defi~e
an auxiliary function. We have

sub2 [x; z] = [null Ix] -+ z; eq [eaar [x]; z] ~ eadar [x];

T -+ sub2 [cdr [x]; z]]

and

sublis Ix; Yl = [atom [y] --~ sub2 [x; y];

T ~ cons [sublis [x; ear [y]]; sublis [x; edr [y]i]

We have

sublis [((X, (A, B)) , (Y, (B, C))) ; (A, X . Y)]

= (a, (a, B), B, c)

188 C o m m u n i c a t i o n s o f t h e ACM

~ssi0ns ~

:}

x]; y]ll

S-ex.
% have

,dr b']]l

)airs of
'e

dr [y]]]]

Ic, u));

he c0r-
i define"

[x]; z]l il ̧

e. R~¢prese,zlation of S-Functions by S-Expressions.
S.func[ions have bem~ described by M-expressions. We
now give a rule for t, ranslating M-expressions into S-
expressions, ii, order to be able to use S-functions for
making certain computations with S-functions and for
aaswering certain questions about S-functions.

The translation is determined by the following rules in
which we denote ~he translation of an M-expression 8 by

1. If g is an S-expression E* is (QUOTE, 8).
2. Variables and function names that were represented

by strings of lower-case letters are translated to the cor-
responding strings of the corresponding upper-case letters.
Thus car* is CAR, and subst* is SUBST.

3. A form fie, ; . • • ; en] is translated to (f*, e~*, • - • , en*).
Thus {cons {ear [x]; edr [x]l}* is (CONS, (CAR, X),
CDR, X)).

4. {[p, -+ e, ; . . . ; p,, -+ e,]}* is (COND, (p**, e**),

. . , (p,,*. e,,*)).
5. {X[[x, ; . ." ; x,]; g]}* is (LAMBDA, (x~*, --- , x,,*),

~;*).
6. {label [a; a]}* is (LABEL, a*, g*).
With these conventions the substitution function whose

M-expression is label [subst; X[[x; y; z]; [atom [z] -+
[eq [y; z] -~, x; T --~ z]; T --~ cons [subst [x; y; ear [z]];
subst Ix; y; cdr [z]]]]l] has the S-expression

(LABEL, SUEST, (I.MMI~DA, (X, Y, Z), (COND

((ATOM, Z), (COND, (EQ, Y, Z), X), ((QUOTE,

T), Z))) , ((QUOTE, T), (CONS, (SUBST, X, Y,

(CAI~ Z)), (SUBST, X, Y, (CDR, Z)))))))

This notation is writable and somewhat readable. I t can
be made easier tO read and write at the cost of making its
structure less regular. If more characters were available
on the computer, it could be improved considerably.

f. The Universal S-Function apply. There is an S-func-
tion apply with the property that if f is an S-expression for
art S-function f' and args is a list of arguments of the form
(argl, . . . , argn), where argl, . . ' , argn are arbitrary
S-expressions, then apply{f; args] and f'[argl; . ." ; argn]
arc defined for the same vahms of argl, . . . , argn, and are
equal when defined. For example,

X[[x; y]; cons [car [x]; yl] [(A, B); (C, D)]

= apply [(LAMBDA, (X, Y), (CONS, (CAR, X),

y)) ; ((A, B), (C, D))] = (A, C, D)

The S-function apply is defined by

apply If; a r g s] = eval [cons If; appq [args]]; NIL]

where

appq [m] = {null [m] -+ NIL;

T -~ cons {list [QUOTE; car [m]]; appq [cdr [m]]]]

and,

eval [e; a] = [

atom [e] --+ assoc [e; a];

atom [car [e]] --+ [

eq {ear [e]; QUOTE] -~ cadr [e];

eq [car [e]; ATOM] -÷ atom [eval [cadr [e]; a]];

eq [cal" [e]; EQ] --~ [eval [cadr [e]; a] = eval [cad& [e]; a]];

eq [car {el; CON])] --~ evcon [edr [e]; a];

eq [ear" [e]; CAR] --~ ear [eval [cadr [el; a]];

eq [car [e]; CDR] --~ cdr [eval [cadr [e]; a]];

eq [car {el; CONS] --~ cons [eval [eadr {el; a]; eval [eaddr {el ;

a]]; T --+ eval [cons [assoe {ear {el; a];

evlis [edr [e]; all; a]];

eq [caar [e]; LABEL] --~ eval [cons [eaddar {el; cdr [e]];

cons {list [cadar {el; car [e]; a]];

eq [eaar [e]; LAMBDA] -+ ewd [caddar [e];

append [pair [ca.dar {el; evils [cdr {el; a]; a]]]

and

evcon [c; a] = [eval [caar [e]; a] -~ eval [eadar [c]; al;

T --~ evcon [cdr [c]; a]]

and

evils [m; a] = [uull [m] --+ NIL;

T -~ cons [eval [car [m]; a]; evlis [cdr [m]; a]]]

We now explain a number of points about these defini-

tions.
1. apply itself forms an expression representing the

value of the function applied to the arguments, and puts
the work of evaluating this expression onto a function eval.
I t uses appq to put quotes around each of the arguments,
so that eval will regard them as standing for themselves.

2. eval [e; a] has two arguments, an expression e to be
evahmted, and a list of pairs a. The first item of each pair
is an atomic symbol, and the second is the expression for
which the symbol stands.

3. If the expression to be evaluated is atomic, eval
evaluates whatever is paired with it first on the list a.

4. If e is not atomic but car [e] is atomic, then the expres-
' ~' (ATOM, e) or sion has one of the forms (QUO I'E, e) or

(EQ, el , e2) or (COND, (pl , e ,) , . . . , (P,,, e,,)), or
(CAR, e) or (CDR, e) or (CONS, e , , e2) or (f, e, , . ." , e,,)
where f is an atomic symbol.

In the case (QUOTE; e) the expression e, itself, is taken.
In the case of (ATOM, e) or (CAR, e) or (CDR, e) the
expression e is evaluated and the appropriate function
taken. In the case of (EQ, el , e2) or (CONS, el, e~) two
expressions have to be evaluated. In the case of (COND,

C o m m u n i c a t i o n s of t h e ACM 18~

(p~, el), - . . , (p,~, e ,)) the p's havo to be evaluated in
order until a true p is found, and theH the eorresponding o
must be evaluated. This is accomplished by eveon. Finally,
in the case of (f, o , , . . . , on) we evaluate t, he expression
that results from replacing f in this expression by whatever
it; is paired with in the list a.

5. The evaluat ion of ((LABEI~, f, g), e~, • - • , e,,) is 'te-
complished by evaluat ing (8, o~ , • .. , e~) with the pairing
(f, (LABEL, f, 8)) put on the front of the previous list, a
of pairs.

6. Finally, the evaluation of ((LA MBDA, (x~, • - - , x,~),
~), e~, . . . , e,~) is accomplished by evaluating ~; with tho
list of pairs ((x t , o~), . . . , ((xn , o ,)) put on the front of
the previous list a.

The list a could be eliminated, and L A M B D A and
LABEl , exprossions evaluated by substi tut ing the argu-
ments for the variables in. the expressions ~;. Unfortu-
nately, difficulties involving collisions of bound variables
arise, but they are avoided by using the list a.

Calculating the values of functions by using apply is an
act ivi ty bet ter suited to electronic computers than to
people. As an illustration, however, we now give some of
the steps for calculating

apply [(LABEL, FF, (L A M B D A , (X) , (COND,

((ATOM, X), X), ((QUOTE, T) ,

(FF, (Ca~ , X)))))) ; ((A.B))] =

The first argument is tho S-expression that represents the
function ff defined in seetion 3d. We shall abbrevia te it
by using the lettor ¢. Wo have

apply [~; ((A - B))]

= e v a I [((L A B E L , FF, ¢), (QUOTE, (A - B))) ; NIL]

where ¢ is tho part of ¢ beginning (L A M B D A

= e v a l [((L A M B D A , (X) , ~o), (QUOTE, (A . B))) ;

((FF , ¢))]

where ca is the part of ¢ beginning (C O N D

= e v a l [(CONI) , (rr~, et), (~r~, e=)); ((X , (QUOTE,

(A . B))) , (FF, ¢))]

Denoting ((X, (QUOTE, (A- B))), (FF , ¢)) by a,
wo obtain

= ovoon [((~-~, ~), (~r~, ~.)) ; ~*1

This involves eval [~rt ; co]

= eval [(ATOM, X) ; a]

= a tom loyal iX; a]]

= a tom loyal [assoe iX; ((X, (QUOTE, (A. B))),

(FF, ¢))] ; all

= a tom [oval [(QUOTE, (A. B)) ; a]]

= a tom [(A.B)]

= F

190 C o m m u n i c a t i o n s of t h e ACM

()ur main caleulation contirmes wiih

apply [¢5; ((A. B))]

= ore, on [((~ , ~)) ' ~t,

which involves oval [~ ; a] = eva[[(Q[YOTE, T) ; ~] = T. :~
Our main calculation again eontim~es with

apply [¢; ((A. B))]

= oval [e2 ; a]

= eval [(FF, (CAR, X)) ; a]

= e v a l [cons [4; evils [((CAR, X)) ; a]]; a] i'

Evaluating evlis [((C, AR, X)) ; a] involves

' k oval [(c~ t{, x) ,~l
! i

- ear [oval [X; all]

= ear [(A 'B)I , where we took steps from the earli~,r '(
computat ion of a.tom loyal IX; all = A,

and so evils i t (CAR, X)) ; a] then becomes,

list [list [QUOTt!;; A]] = ((Q U) r E , A)) ~.

and otlr main quant i ty becomes

eva| [(4,, (q~Jo IL, x)) ; ~] {
{

The subsequent steps are made as in tho begimfing ,,f
the calculation. The L A B E L and L A M B D A cause i~(:~*.' ' {{::
pairs to be added to ~, which gives a new list; of pairs < . i
The rr, term of the conditional oval [(ATOM, X) ; <! h> :~,
the value 32 t)oeause X is paired with (Q[O 1 E, A)tirst :i~

. c . in a l , rather than with (Q U O I E , (A B)) as in c~.
Therefore we end up with oval iX; a~] fl'om the .e~'co~,

'rod this is just A.

g. Functions with Functions as Arguments. There are a
number of useflfl functions some of whose arguments are
functions. They are especially useful in defining othe|" rune- ~-
tions. One such function is maplist ix; f] with an S-expres-
sion argument x and an argument f that, is a function from
S-expressions to S-expressions. Wo define :,

lnaplist [x; fl = [null [xl --~ NIL ;

T --+ cons [fix]; maplist [cdr ix]; i'1 ~] ,

:['he usefulness of maplist is illustrated by fornmlas for ii
the part ial derivat ive with rospeet to x of expressions i~>
volving sums and products of x and other variables. The

!i S-expressions that we shall differentiate are formed ~ :
follows. ;~

1. An atomic symbol is an allowed expression. ~
2. If e~, e~, • • • , e , are allowed expressions, (PLUS, < , ~,

. . . , en) and (T I M E S , e~, . . . , e .) arc also, a.nd represeld'
the sum and product, respectively, of e~, • • - , e , . ;:.

This is, essentially, the Polish notat ion for functio~*
except, tha t the inclusion of paronthe~es and eoinmas tfl"
lows functions of variablo numbers of arguments. An exa m~
ple of an allowed expression is (T I M E S , X (t)L[~'S'
X, A), Y), the conventional algebraic notati(m for whicD
is X (X + A) Y .

t

,arlier
}
!i

!

)

xpres,
fl'0m !

l fill x;
f~

as foi: ::
~ls lrt- tl

ted as
i

which i

i J~il;! ~
/" Zil

(a)

FIG.

Our different.fallen tormula, which gives the derivative
of y with respecti (.() x, is

diff [y; x] = [atom [y]---* [eq [y; x] -~, ON[i;; T --, ZEtIOI;
eq [car [y]; PI,USI --~ cons [['LUS; maplist [cdr [y]; X[[z];
diff[car [z]; x]/I]; eq[car [y]; TIMES] --+ cons[PLUS;
maplistledr[y]; X[[zl; cons [TIMES; maplist[cdr [y];
X[[w]; ~--~eq [z; w] -÷ car [w]; 1l' ~ diff' [car [[w]; xlll]]]]

The derivative of the allowed expression, as computed
by this formula, is

(PLUS, (TIMES, ONE, (I'IA;rs, X, A), Y),

(TIMES, X, (PLUS, ONE, ZERO), Y),

(TIMES, X, (PLUS, X, A), ZERO))

Besides maplist, another useful function with functional
arguments is search, which is defined as

search Ix; p; f; u] --- [null Ix] --+ u; p[x] --~ f[x];

T -+ search [cdr [x]; p; f; u]

The function ,search is used to search a list for an element
that has the property p, and if such an element is found, f
of that element is taken. If there is no such element, the
function u of no argument is computed.

4. The LISP P r o g r a m m i n g S y s t e m

The LISP programming system is a system for using
the IBM 704 computer to compute with symbolic informa-
tion in the form of S-expressions. I t has been or will be
used for the following purposes:

1. Writing a compiler to compile LISP programs into
machine language.

2. Writing a program t.o check proofs in a (:lass of
formal logical systems.

3. Writing programs for fornml differentiation and
integration.

4. Writing programs to realize various algorithms for
generating proofs in predicate calculus.

5. Making certain engineering calculations whose re-
sults are formulas rather than numbers.

6. Programming the Advice Taker system.
The basis of the system is a way of writing computer

programs to evaluate S-functions. This will be described
in the following sections.

In addition to the facilities for describing S-functions,
there are facilities for using S-flmctions in programs
written as sequences of statements along the lines of
FORTRAN (4) or AL(;OI; (5). These features will not be
described in tiffs article.

(b) (c)

I

a. R<'4ffe,~entalio~ of £'-P~'xpre.~,~wns b:q List Structure. A
list structttre is a collection of computer words arranged
as in figure la or lb. Each word of the list structure is
represented by one of the subdivided rectangles in the
figure. The left box of a rectangle represents the address
field of the word and the right box represents the decre-
ment field. An arrow from a box ~;o another rectangle
means that the field corresponding to the box contains
the location of the word corresponding to the other
rectangle.

I t is permitted for a substructure to occur in more than
one place in t~ list structm'e, as in figure lb. but it is no~
permitted for a sturcture to have cycles, as in figure le.

An atomic symbol is represented in the computer by a
list structure of special form called the association list of
the symbol. The address field of the first word contains a
special constant which enables the program to tell that
this word represents an atomic symbol. We shall describe
association lists in section 4b.

(o) (b)

l?m. 2

An S-expression x that is not atomic is represented by
a word, the address and decrement parts of which contain
tile locations of the subexpressions ear[x] and edr[x],
respectively. If we use the symbols A, B, ere, to denote
the locations of the association list of these symbols, then
tile S-expression ((A .B) . (C . (E .F))) is represented by
the list structure a of figure 2. Turning to the list. form of
S-expressions, we see that, tile S-expression (A, (B, C), D),
which is an abbreviation for (A . ((B . (C-N[L)) . (D-
NIL))), is represented by tile list structure of figure 2b.
When a list structure is regarded as representing a list,
we see that each term of the list occupies tile address
part of a word, the decrement part, of which points to the
word containing the next term, while the last word has
NIL in its decrement.

An expression that has a given subexpression occurring
more than once can be represented in more than one w'~y.
Whether the list structure for the subexpression is or is not
repeated depends upon the history of the program.
Whether or not a subexpression is repeated will make no

Comnumications of the XCM 1.91

 i;ii ii!iiii!i

difference in the results of a program as they appear out-
side the machine, although it will affect the time and
storage requirements. For example, t t~e S-('xpressio~
((A. B). (A. B)) can be represented by either the list. struc-
ture of figure 3a or 3b.

~o} {b)

F~G. 3

Tile prohibition against circular list, structures is es-
sentially a prohibition against an expression being a sub-
expression of itself. Such an expression could not exis~ ot~
paper in a world with our topology. Circular l:]st structures
would have some advantages in the machine, for example,
for representing recursive hmctions, but difficulties in
printing them, and in certain other operations, make it
seem advisable not to use them for the present.

The advantages of list structures for the storage of
symbolic expressions are:

1. The size and even the number of expressions with
which the program will have to deal cannot be predicted
in advance. Therefore, it is difficult to arrange blocks of
storage of fixed length to contain them.

2. Registers can be put back on the free-storage list
when they are no longer needed. Even one register re-
turned to the list is of value, but if expressions are stored
linearly, it is difficult to make use of blocks of registers of
odd sizes that may become available.

3. An expression tha t occurs as a subexpression of
several expressions need be represented in storage only
once.

b. Association Lists. In the LIsP programming system
we put more in the association list of a symbol than is
required by the mathematical system described in the
previous sections. In fact, any information that we desire
to associate with the symbol nmy be put on the associa-
tion list. This information may include: the print name,
that is, the string of letters and digits which represents
the symbol outside the machine; a numerical value if
the symbol represents a number; another S-expression
if the symbol, in some way, serves as a name for it; or the
location of a routine if the symbol represents a functior~
for which there is a machine-language subroutine. All this
implies that in the machine system there are more prirni-
tive entities than have been described in the: sections on
the mathematical system.

For the present, we shall only describe how print names
are represented on association lists so that in reading or
printing the program can establish a correspondence
between information on punched cards, magr:Jetic tape or
printed page and the list structure inside the machine.
The association list. of the symbol DIFFEI{t~3NTIATt?] has a
segment (ff the form shown in figure 4, Here lmame is a
symbol that indicates that the struett~re for the. print

192 (: o m m u n i c a t i o n s of the ACM

~mme of the symbol who~e asso(qaEi(m list this is hangs
from the uext~ word <m ~h(, association list. l:n the second
row of the figure w(, have a list of three words. The address
-part of each of t h ~ c words polaris to ~ word containing
six (i4:)it. characters. The last, uord is filled (:)~tt with a
6.t:)iC combination that do(,s not~ represent a character
t)rilltable by the computer. (Ilecall thai, the IBM 704 has
a 36-bit word a:ud that printable eh~raeters are each
represented by 6 bits.) The presence of tile words with
character inform~tion means that the association lists do
~of themselves represen{; S-exl:)ressiotls, :.rod that only
some of the rum, rictus for dealing with S-expressions make
sense within as association list.

c. Free-Storaf/c List. At. any given time only a part of
the memory reserved for list, structures will actually be in
use for storing S-expressions, The remaining registers (in
ore' system the number, initially, is approxima{,ely 15,000)
are arranged in a single list c.dled the fl'ee-.stora,qe liet. A
cert:dn register, :Fm,:E, in the program contains the loca-
ti(:m of the first register in this list. When a word is re-
quired to form some additional list structure, the first
word on the fl'ee-,s'torage list is taken and the number in
register FaEE is changed to become the location of the
second word on the free-storage list. No provision need be
made for the user to program the return of registers to the
free-st.orage list.

This return takes place atttoInatieally, approximately
as follows (it is necessary to give a simplified deseriptiol~
of this process in this report): There is a fixed set of base
registers in the program which contains the locations of ~f
list structures that, are accessible to the program. Of]
course, because list structures branch, an arbitrary num-

ber of registers may be involved. Each register that is }
accessible to the program is accessible because it can be
reached from one or more of the base registers by a chain
of car and edr operations. When the contents of a base
register are changed, it may happen that the register Co
which the base register formerly pointed cannot be reached
by a car-cdr chain from any base register. Such a register
may be considered abandoned by the program because its
contents can no longer be found by any possible program;
hence its contents are no longer of interest, and so we
would like to have it back on the free-storage list. This ,'
comes about in the following way. t

Nothing happens until the program runs out of free
storage. WherJ a free register is wanted, and there :is none
left on the free-storage list, a reclamation cycle starts.

. - . - - .

Fm, 4

First, the program finds all registers accessible from the t
base registers and makes their signs negative. This is !
accomplished by starting from each of the base registers i

[4II~
fro
re~
iC

ch
rel
re,
st~
th

CC
h(
ci

F(

S(
p:

I ll
Cl
tJ

t
S:

and changing the sign of every register tha t can be reached
from it by a car-cdr chain. If the program encounters a
register in this process which already has a negative sign,
it assumes that this register has already been reached.

After all of the accessible registers have had their signs
changed, the program goes through the area of memory
reserved for the storage of list structures and puts all the
registers whose signs were not changed in the previous
step back on the free-storage list, and makes the signs of
the accessible registers positive again.

This process, because it is entirely automatic, is more
convenient for the programmer than a system in which
he has to keep t rack of and erase unwanted lists. Its effi-
ciency depends upon not coming close to exhausting the
available memory with accessible lists. This is because the
reclamation process requires several seconds to execute,
and therefore must result in the addition of at least
several thousand registers to the free-storage list if the
program is not to spend most of its time in reclamation.

d. Elementary S-Functions in the Computer. We shall
now describe the computer representations of atom, = ,
ear, cdr, and cons. An S-expression is communicated to
the program that represents a function as the location of
the word representing it, and the programs give S-expres-
sion answers in the same form.

atom. As stated above, a word representing an atomic
symbol has a special constant in its address part : atom is
programmed as an open subroutine that tests this part.
Unless the M-expression atom[e] occurs as a condition in
a conditional expression, the symbol T or F is generated
as the result of the test. In ease of a conditional expression,
a conditional transfer is used and the symbol T or F is
not generated.

eq. The program for eq[e; f] involves testing for the
numerical equality of the locations of the words. This
works because each atomic symbol has only one association
list. As with atom, the result is either a conditional transfer
or one of the symbols T or F.

car. Computing car[x] involves getting the contents
of the _address par t of register x. This is essentially accom-
plished by the single instruction ci~a 0, i, where the argu-
ment is in index register i, and the result appears in the
address par t of the accumulator. (We take the view that
the places from which a function takes its arguments and
into which it puts its results are prescribed in the defini-
tion of the function, and it is the responsibility of the
programmer or the compiler to insert the required data-
moving instructions to get the results of one calculation
in position for the next.) ("car" is a mnemonic for "con-
tents of the _address part of register.")

edr. edr is handled in the same way as ear, except that
the result appears in the decrement part of the accumu-
lator. ("edr" stands for "cgntents of the decrement part
of register.")

cons. The value of cons[x; y] must be the location of a
register tha t has x and y in its address and decrement
parts, respectively. There may not be such a register in

the computer and, even if there were, it would be time-
consuming to find it. Actually, what we do is to take the
first available register from the free-storage list, put x and
y in tlhe address and decrement parts, respectively, and
make the value of the function the location of the register
taken. ("cons" is an abbreviation for "construct.")

It, is the subroutine for cons tha t initiates the reclama-
tion when the free-storage list is exhausted. In the version
of the system that is used at present cons is represented
by a closed subroutine. In the compiled version, cons is
open.

e. Representation of S-Functions by Programs. The
compilation of functions that are compositions of ear,
cdr, and cons, either by hand or by a compiler program,
is straightforward. Conditional expressions give no trouble
except that they must be so compiled that only the p's
and e's that are required are computed. However, prob-
lems arise in the compilation of reeursive functions.

In general (we shall discuss an exception), the routine
for a recursive function uses itself as a subroutine. For
example, the program for subst[x;y;z] uses itself as
a subroutine to evaluate the result into the subexpres-
sions ear[z] and cdr[z]. While subst[x;y:edr[z]] is being
evaluated, the result of the previous evaluation of
subst[x; y; car[z]] must be saved in a temporary storage
register. However, subst may need the same register for
evaluating subst[x;y;edr[z]]. This possible conflict is re-
solved by the SAVE and UNSAVE routines that use
the public push-down list. The SAVE routine is entered
at the beginning of the routine for the reeursive function
with a request to save a given set of consecutive registers.
A block of registers called the public push-down list is
reserved for this purpose. The SAVE routine has an index
that tells it how many registers in the push-down list are
already in use. I t moves the contents of the registers
which are to be saved to the first unused registers in the
push-down list, advances the index of the list, and returns
to the program from which control came. This program
may then freely use these registers for temporary storage.
Before the routine exits it uses UNSAVE, which restores
the contents of the temporary registers from the push-
down list and moves back the index of this list. The result
of these conventions is described, in programming termi-
nology, by saying that the reeursive subroutine is trans-
parent to the temporary storage registers.

f. Status of the LISP Programming System (February
1960). A variant of the function apply described in section
5f has been translated into a program APPLY for the
IBM 704. Since this routine can compute values of S-
functions given their descriptions as S-expressions and
their arguments, it serves as an interpreter for the Lisp
programming language which describes computation

processes in this way.
The program APPLY has been imbedded in the Lisp

programming system which has the following features:
1. The programmer may define any number of S-fune-

Communications of the ACM 193

tions by S-expressions. These ftmctions may refer to each
other or to certain S-functions represet~ted by machine
language program.

2. The vMues of defined functions may be computed.
3. S-expressions may be read and printed (directly or

via magnetic tape).
4. Some error diagnostic and selective tracing facilities

are included.
5. The programmer may have selected S-function,s

compiled into machine language programs put into the
core memory. Values of compiled functions are computed
about 60 times as fast as they would if interpreted. Corn-
pilaf}on is fast, enough so that it is not necessary t,o punch
compiled program for future use.

6. A "program feature" allows programs containing
assignment and go to staternents in the style of ALl;eL.

7. Computation with floating point num/)ers is possible
in the system but, this is inefficient.

8. A programmer's manuM is being prepared.
The Lisp programming system is appropriate for corn-

putations where the data can conveniently be represented
as symbolic expressions allowing expressions of the same
kind as subexpressions. A version of the system for the
IBM 709 is being prepared.

5. A n o t h e r F o r m a l i s m for F u n c t i o n s of Symbol ic
E x p r e s s i o n s

There are a number of ways of defining functions of
symbolic expressions which are quite similar to the system
we have adopted. Each of them involves three basic func-
tions, conditional expressions, and recursivc function
definitions, but the class of exprcssions corresponding to
S-expressions is different, and so are the precise definitions
of the functions. We shall describe one of these variams
called linear IASP.

The L-expressions are defined as follows:
1. A finite list, of Characters is admitted.
2. Any string of admitted characters'ia an L-expression.

This includes the null st, ring denoted by A.
There are t,hree functions of strings:
1. firs}Ix] is the first character of the string x.

first[A] is undefined.
For example: first[ABC] = A

2. rest[x] is the string of characters which remains when
the first character of the string is deleted.

rest[A] is undefined.
For example: resf[ABC] = BC

3. eombineIx; y] is the string formed by prefixing the
character x to the string y.
For example: combine[A; BC] = ABC

There are three predicates on strings:
1. char[x], x is a single character.
2. null[x], x is the null string.
3. x = y, defined for x and y characters.
The advantage of linear L~sP is that no characters are

given special roles, as are parentheses, dots, and commas
ill LISP, This permits computations with all expressions

194 Communicat ions of the AC~!

that ca*it be writ Ien li:aearly. The disadva~.iiage of m~ea~
W~ LisP is that; ~he extraction of subexpressions is a faith. I ;!:

involved, rather than an elementary operat, ion, It Is ~)t ': si~]
hard to write, in linear L~s>, functions that correspoad i:,., g(e;
the basic functions of L:~se, so that, mathematically,
linear I,Ise includes L~st,. This turns out to be the mos~
convenient way of progr'~mming, i:n linear L:~se, the mor~,
complicated manipulations. However, if the function>
are to be represented by computer routines, Ltse is ess<~.
tially faster.

6. F l o w c h a r t s a n d R e c u r s } o n

Since both the usual form of computer program m~d re-
cursive function definitions are universal computationally,
i~ is interesting to display the relation between them. The
translation of recurs}re symbolic functions inlo compuier
programs was the subject of the rest of this report, h~ ~his
section we show how to go the o t te r way, at least i~
prineipk. ~.

The state of the machine at any time during a compu,a-
lion is gNen by the values of a number of variables, l,e~
these variables be combined into a vector ~. Consider a
program block with one entrance and one exit. It (teti~,es
and is essentiMly defined by a certain function f tha~
takes one machine configuration into another, that is, f has
the form ~' = f(~). Let us call f lhe associated functio,~ of
the program block. Now let a number of such })locks i,
combined into a program by decision elements u that (h,.
eide after each t)lock is completed which block will }~a~
entered next. Nevertheless, let the whole program ~siil}
have one entrance and one exit.

W<

I

exi

fn
J~

' ih

?

a[

p~

t c

t,

i : (:

F~c,. 5

We give as an example the flowchart of figure 5. l,ei *~>
0g { describe the function r[~] that gives the transformati(m ~

the vector ~ between entrance and exit of the whole block.
{
!

i'airl:i We shall (:tefi,~(~ il i,~ col~junction with lhe functions
- ~[f/] and t[,~l, which give the /rausformations thai ~ under-
2,1~{ I goes between the points S a,~d T respeclively and the exit.
u~.l tO :
eally, We h~ve

most r[~] = [~rH[~I-' ~'[f,[~ll; T -~ s[fd~]]l
Ill0r(,

~ti0ns~
)8sell.

t~d reL
,nelly,

lputei, !,
in this

}
apu~a~

;ider ~i,
definil
f that!

s, fii~ii2
t ion
,eks g~
hat di)
will

i

4;

Given a flowch'trt with a single, entrance and a single
exit, it is easy ~(, write down the recursive function that
gives the tr 'msformation of tim state vector from entrance
to exit in terms of the corresponding functions for the

!4 ̧

computation blocks and the predicates of tile branch
points. In general, we proceed as follows.

In figure 6, let ~ be an n-way branch point, and let
fi, . . . , f, be the computations leading to branch points
fl~, f12, ' " , fl l~et 4) be the function that transforms
between fl and the exit of the chart, and let (b~ , • " • , 4,~ be
the corresponding functions for f l ~ , . . . , fl,~. We then
write

~[~] = [p~[~J --, ¢,[t',[}]]; . . . ; p,,[}] ~ 0,,[f',,[}]]]

Acknowledgments

The inadequacy of tile X-notation for naming recursive
functions was noticed by N. Rochester, and he discovered
~n alternative to the solution involving label which has
been used here. The form of subroutine for cons which
permits its composition with other functions was invented,
in connection with another programming system, by C.
Gerberiek and H. L. Gelernter, of IBM Corporation. The
Lisp programming system was developed by a group
including R. Brayton, D. Edwards, P. Fox, L. Hodes, D.
Luckham, K. MMing, J. McCar thy , D. Park, S. Russell.

The group was supported by the M.I .T. Computat ion
Center, and by the M.I .T. Research i ,aboratory of Elee-
U'onics (which is supported in par t by the U.S. Army

(Signal Corps), the U.S. Air Force (Office of Scientific
Research, Air Research and Development Command),
and the U.S. Navy (Office of Naval Research)). The author
also wishes to acknowledge the personal financiM support
of the Alfred P. Sloa.n Foun(l't,tion..

¢

f2

% _ j . . . % _ j
#, #2

FIG. 6

REFERENCES

1. J. McCARTHY, Programs with common sense, Paper presented
at the Symposium on the Mechanization of Thought Proc-
esses, National Physical Laboratory, Teddington, England,
Nov. 24-27, 1958. (Published in Proceedings of the Sympo-
sium by H. M. Stationery Office).

2. A. NEWELL AND J. C. SHAW, Programming the logic theory
machine, Proc. Western Joint Computer Conference, Feb.
1957.

3. A. CmmcH, The Calculi of Lambda-Conversion (Princeton
University Press, Princeton, N. J., 1941).

4. FORTRAN Programmer's Reference Manual, IBM Corpora-
tion, New York, Oct. 15, 1956.

5. A. J. PERLIS AND K. SAME, LSON, International algebraic lan-
guage, Preliminary Report, Comm. Assoc. Comp. Mach., Dec.
1958.

Symbol Manipulation by Threaded Lists*

i!

ilii! ̧

bl0<

i: i~;~!il ~

A. J. PEltLIS AND CHARLES THORNTON, Carnegie Institute of Technology, Pittsburgh, Pa.

P a r t 1: T h e T h r e a d e d L i s t L a n g u a g e

1. I n t r o d u c t i o n

In the field variously called artificial intelligence,
heuristic programming, au tomata theory, etc., many of

* The work was SUl)ported in part by the Off:ice of Naval Re-
search under contract munber Nonr.-760 (18), Nr 04(,)-141 and by
the U. S. Army Signal (~orps under e(mtraet number l)a 36-039-
8eq5081, File No. 0195-PH-58-91 (4461).

the most interesting problems do not lend themselves
readily to solutions formulated in the automatic program-
ming systems now in wide use. Several new approaches
to more adequate and natural programming systems have
been made in the past few years. Notable among these
are the list s t ructure languages of the IPL family developed
by Newell-Simon-Shaw [1] and LISP by McCar thy [2].
They provide great flexibility for the construction of
highly composed programs, and are able to represent and
process systems of arbitrarily great complexity, subject

C o m m u n i c a t i o n s o f the AC1M 1195

