
Recursive Functions of Symbolic Expressions 
Their Computation by Machine, Part I 

and 

JOHX MCCAaTItY, Massachusetts Institute of Technology, Cambridge, Mass. 

1 .  I n t r o d u c t i o n  

A programming system called LISP (for lASt Processor) 
has been developed for the IBM 704 computer by the 
Artificial Intelligence group at  M.I.T.  The system was 
designed to facilitate experiments with a proposed system 
called the Advice Taker, whereby a machine could be 
instructed to handle declarative as well as imperative 
sentences and could exhibit "common sense" in carrying 
out its instructions. The original proposal It] for the Advice 
Taker was made in November 1958. The main require- 
ment was a programming system for manipulating ex- 
pressions representing formalized declarative and irnpera- 
live sentences so that  the Advice Taker system could make 
deductions. 

In the course of its development the Lisp system went 
through several stages of simplification and eventually 
came to be based on a scheme for representing the partial 
recursive functions of a certain class of symbolic expres- 
sions. This representation is independent of the IBM 704 
computer, or of any other electronic computer, and it now 
seems expedient to expound the system by starting with 
the class of expressions called S-expressions and the func- 
tions called S-functions. 

In this article, we first describe a formalism for defining 
functions reeursively. We believe this formalism has ad- 
vantages both as a programming language and as vehicle 
for developing a theory of computation. Next, we describe 
S-expressions and S-functions, give some examples, and 
then describe the universM S-function apply which plays 
the theoretical role of a universal Turing machine and 
the practical role of an interpreter. Then we describe the 
representation of S-expressions in the memmT of the 
IBM 704 by list structures similar to those used by Newell, 
Shaw and Simon [2], and the representation of S-functions 
by program. Then we mention the main features of the 
Lisp programming system for the IBM 704. Next comes 
another way of describing computations with symbolic 
expressions, and finally we give a recursive function in- 
terpretation of flow charts. 

We hope to describe some of the sylnbolie computations 
for which LISP has been used in another paper, and also to 
give elsewhere some applications of our reeursive function 
formalism to mathematical logic and to the problem of 
mechanical theorem proving. 
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2. F u n c t i o n s  an d  F u n c t i o n  Def in i t ions  

We shMl need a number of mathematical ideas ar:d 
notations concerning functions in general. Most of the 
ideas are well known, but the notion of conditional e,~pre~'- 
sion is believed to be new, and ihe use of conditional 
expressions permits functions to be defined recursively in a 
new and convenient way. 

a. Partial Functions. A partial function is a funct on 
that is defined only on part  of its domain. Partial funetio:~s 
necessarily arise when functions are defined by eomputa~ 
tions because for some values of the arguments t:he Pomp:> 
ration defining the value of the function may not ter- 
minate. However, some of our elementary functions wilt be 
defined as partial functions. 

b. Propositional Expres.s'ions and Predicates. A t)ropo~i- 
tionM expression is an expression whose possible values 
are T (for truth) and F (for falsity). We shall assume 
that the reader is fanfiliar with the propositionM eom~ee- 
lives A ("and"), V ("or" ) ,  and ~ ("not") ,  Typieai 
propositional expressions are: 

x < y  

(x < y) A (b = e) 

x is prime 

A predicate is a function whose range consists of ih{: 
t ruth values T and F. 

e. Conditional Expressions. The dependence of truth 
values on the vahtes of quantities of other kinds is ex- 
pressed in mathematics by predicates, and the depende~ee 
of t ruth values on other t ruth values by logical comxee- 
~ives. However, the notations for expressing symbol (alE" 
the dependence of quantities of other kinds on trutt~ 
vMues is inadequate, so that  English words and phrases 
are generMly used for expressing these depende~tces i:~ 
texts that, describe other dependences symbolically. I!'<~r 
example, the function Ix I is ustmlly defined in words. 

Conditional expressions are a deviee for expressing the 
dependence of quantities on propositional quantities. :\ 
conditional expression has the form 

( p :  - +  e l ,  - . -  , p ~  --+ e , , )  

where the p's are propositionM expressions and the e's are 
expressions of any kind. I t  may be read, "If p~ thexx <,  

( 



a~3d 

zpre;~. : 

!i 

,viii ~'e : 

O / l l / e b  

~yp e~l 

o~ the 

[ 

mde~a- 
collnf¢ ~- 

h tr~t 

lly F,:,~ 
worg! 

ities..'~ 

e e 's  ~?~ ~ 

tbet~ el, 

,iherwise if p2 then e2, - - • , o therwise  if p,, then e,, ," or 

..p~ y/el(Is e3 , " "  , P,, yields e,, . "  
We now give the rules :for de te rmin ing  whether the value 

r,f !p, -- '  e , ,  . , '  , p,, - - '  e ,)  is defined, and if so what  its 
value is. Examine the p's f rom left. to right. If  a p whose 
valu~ is T is eilcountered before any  p whose vahm is 
~mdefilied is eneom~tered, then the  value of the conditional 
,xpressi(m is the value of the corresponding e (if this is 
left ned). If airy undefined p is ene(:mntered before a true p, 
.r if all p's are false, or if the e corresponding to the first 
true p is undefined, then the v a l u e  of the conditional ex- 
pression is undefined. We now g ive  examples. 

( t  < 2 - - ~ 4 , 1  > 2 - - + 3 )  = 4 

(2 < 1--~ 4, 2 > 1 - ~ 3 ,  2 > 1 - -~2)  = 3 

(,2 < 1- ->4,  T - ~ 3 )  = 3 

0 T (2 < 1 - , 6 ,  -~3)  =3  

(1 
(2 < 1 - - , 3 ,  T - - , 0  ) is n l l d e [ i l l e d  

(2 < I --~ 3, 4 < 1 --~ 4)  is undefined 

Some of tile simplest app l ica t ions  of eonditionM expres- 
sia~s are in giving such defini t ions as 

x = (x < 0 - - , - x ,  i F - - ~ x )  

san x ~ (x < 0 - - , - 1 ,  x == 0 - -~0 ,  T - ~ I )  

d. Rccursive Function DefiniHons. By using conditionM 
~:,xpressions we can, without  circular i ty ,  define functions 
,v formulas in which the def ined function occurs. For  
{'xample, we wrile 

l~: = (n = 0 - ~  1, T - - * n . ( n -  1)1) 

When we use this formula to e v a l u a t e  0 [ we get the answer 
i: because of the way in which t he  value of a conditional 
expression was defined, the  meaningless expression 
~]- ~} - 1)! does not arise. T he  eva lua t ion  of 2! according 
r, lhi:~ definition proceeds as fo l lows:  

2! - (2 = 0 - *  1, T - - . 2 . ( 2  - 1):)  

- 2 . 1 !  

= 2 . (1  = 0 ~ L  T - ~  1.(1 -- 1)!) 

= 2 - 1 - 0 !  

= - . 1 . ( 0  = 0 - ~ I , T - ~ 0 . ( 0 -  1 ) ! )  

= 2 . 1 . 1  

= 2  

We now give two other appl ica t ions  of recursive func- 
tion definitions. The  greatest  c o m m o n  divisor, gcd(m,n),  
of ~wc, positive integers m and  n is computed by  means of 
the Euclidean algorithm. This  a lgor i thm is expressed by 

the recursive funct ion defirfition: 

ged(m,n)  = (In > n --, ged(n ,m) ,  r em(n ,m)  

= 0 -+  m, T --* ged ( r em(n ,m) ,m)  ) 

where rein(n, In) denotes the remainder left when n is 
divided by  m. 

The Newtonian algorithm for obtaining an approximate  
square root of a number  a, s tar t ing with an initial approxi- 
mat ion :v and requiring that  an acceptable approximat ion 
y satisfy l y 2 --  a I < e, m a y  be written as 

sqrt(a, x, ~) 

1 (x + ~) e)) = (Ix ~ -  a I < e - - , x , T - ~ s q r t  (a ,~  x ' 

The simultaneous reeursive definition of several func- 
tions is also possible, and we shall use such definitions if 
they are required. 

There is no guarantee tha t  tile computa t ion  determined 
by a reeursive definition will ever terminate  and, for 
example, an a t t empt  to compute  n[ from our  definition 
will only succeed if n is a non-negative integer. I f  the com- 
putation does not terminate,  the function mus t  be regarded 
as undefined for the given arguments.  

The propositional connectives themselves can be de- 
fined by conditional expressions. We write 

p / ~ q =  (p --~ q, T --~ F)  

p V q  = (p -~  T, T -*  q) 

~-~p = ( p - ~ F , T - - ~ T )  

p D q = (p-~q, T-~T) 

I t  is readily seen that  the r ight-hand sides of the equa- 
tions have the correct t ru th  tables. If  we consider situa- 
tions in which p or q ma y  be undefined, the  connectives 
/~ and V are seen to be; noncommutat ive .  For  example if 
p is false and q is undefined, we see tha t  according to the 
definitions given above p A q is false, but  q A p is unde- 
fined. For  our applications this noncommuta t i v i t y  is 
desirable, since p /~ q is computed by first comput ing  p, 
and if p is false q is not  computed.  :If the computa t ion  for 
p does not  terminate,  we never get around to  comput ing  q. 
We shall use propositional connectives in this sense here- 
after. 

e. Functions and Forms. I t  is usual in m a t h e m a t i c s - -  
outside of mathemat ica l  log ic - - to  use the word " funct ion"  
imprecisely and to apply it to  forms such as y~ -V x. Be- 
cause we shall later compute  with expressions for functions, 
we need a distinction between functions and  forms and a 
notat ion for expressing this distinction. This  distinction 
and a notat ion for describing it, from which we deviate 
trivially, is given by Church [3]. 

Let  f be an expression tha t  stands for a funct ion of two 
integer variables. I t  should make sense to write f (3 ,  4) and 
the value of this expression should be determined.  The 
expression y~ + x does not  meet this requirement;  
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y~ + x(3, 4) is not a convent ional  no~ati(m, and if we 
a t t e m p t e d  to define it we would be uneert%ir~ whether  its 
valtte would tu rn  out, to be i13 or 1.9. Church calls a,n expres- 
sion like ye + x a form. A form can be eot~verted into a 
f tmetion if we can determine the, eorrespondenee between 
the variables occurring in the form and the ordered list of 
a rguments  of the desired function. This  is accomplished 
b y  Church 's  X-flotation. 

I f  ~;is ~ fo rm in variables xl , - . .  , x~,, then X((xt , , . .  , 
x,,), ~;) will t:>(:~ taken to be the function of n variables whose 
value is de te rmned  by subst i tu t ing the a rguments  for lhe 
var iables  x~, • • - , x~, in tha t  order in g and eva lua t ing  the 
result ing expression. For example,  X( (x ,y) ,ye+x)  is a 
funct ion of two variables,  and  X ( (x, y ) ,  y~ + x )  (3, 4:) - 19. 

The variables  occurring in the list of variables of a X-ex- 
pression are d u m m y  or bound, like, variables of integrat ion 
in a definite integral. T h a t  is, we may  change the names 
of the bound w~riables in a function expression without  
changing the vMue of the expression, provided tha t  we 
make  tile same change for each occurrence of the wu'iable 
and do not make  two variM)les lhe same tha t  previously 
were different. Thus  X((x,y) ,y" '+x) ,X((u,v) ,  v ~ + u )  and 
X((y, x) ,  x e + y )  denote the same function. 

We shall f requent ly  use expressions in which some of the 
w m a b l e s  are bound by  X's and  others are not. Such art ex- 
pression m a y  be regarded as defining a function with 
parameters .  T h e  unbound variables are (;ailed free vari- 
ables. 

An adequa te  nota t ion  t ha t  distinguishes functions from 
forms allows an unambiguous  t r ea tnmnt  of functions of 
ftmetions. It, would involve too much of a digression to give 
examples  here, but we shall use functions with functions as 
a rguments  la ter  in this report .  

Difticulties arise in combining functions described by  
X-expressions, or by arty other  nota t ion  involving variables,  
because different bound variables  m a y  be represented by 
the same symbol .  This  is called collision of bound vari-  
ables. There  is a nota t ion  involving operators  tha t  are 
called eombinators  for combining functions wi thout  the use 
of variables, Unfor tuna te ly ,  the combina tory  expressions 
for interesting combinat ions of functions term to be lengthy 
and unreadable.  

f. Expressions for Recursive Functions. The  X-notation is 
inadequate  for  naming funct ions defined recursively. For  
example,  us ing X's, we  can convert  the definition 

sqrt(a ,  x, e) 

into 

J. a 
( ix" -- a I < e -~  x, T -~  sqrt(a ,  2(x + x ), e)) 

sqr t  = X ( ( a , x , ¢ ) , ( l x  2 -- a,l < e---+ x, T'---~ 

i a) +))) 
sqr t  (a, 2(x + x ' 

but  the r igh t -hand side cannot  serve as an expression for 
the fimetion because there would be nothing to indicate 
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t ha t  the refere~ee to sqrt  within *he expression sloe :1 for ih~. 
expression as a whole. 

In  order to be able to write expressio~s for I'eCursive 
functions, we introduce another  ~aotation label(~ ['~ &:.. 
notes the. expression g, provided tha t  oeeurre~ces <)f ~} 
within 8 are to be in terpre ted  as referring to the expres,,:i<, 
as a whole. Thus  we can write 

h~bel(sqrt, X((a, x, e), ( [ x'-' - a 

< e --,  x, rl' -~  sqrt  (a, 1 (x a 
2 '  + x )' ~):~) 

a b ;  a n a n l e  f o r  o l l r  s ( t l : ' t  functiolt. 
The  symbol  a ill label(a,g) is also bound thai is, i~ i; 

m a y  be altered sys temat ica l ly  without  changing the meal- 
ing of the expression. I t  behqvcs, differently from a \'ariaN~ { bound by a X, howe\ 'er.  

3. R e e u r s i v e  F u n c t i o n s  o f  S) m b o l i c  Expres s ions  0 

We shall first define a class of symbol ic  express ~ s :i~ 
terms of ordered pairs and lists. Then  we shall define five, g 
e lementary  functions and predicates,  and build front them ~i' 
by composition, condit ional  expressions, and "(ru,sv~:, 
definitions an extensive class of funct ions of which w~ ; 
sh'dl give a number  of examples.  We shall lhen show how 
these functions themselves  can be expressed as syr~bol c 
expressions, and we shah define a universal  f t l l l C t i O t t  ' ( P ]  g ¢ 

tha t  Mlows us to compute  front the expression for a gi~t~ 
function its value for given arguments .  Finally, we shal i 
define some functions with functions as argume~ts :u~d ill' 
giw; some useful examples.  

a. A Class qf S!]nzbolic Expressions. We shall now <te{i~+~, { 
the S-expressions (S st ' rods for symbol ic) .  They  are for ~ed :' 
by ttsittg the special chara(.ters 

) 
( 

and an infinite set of dist inguishable a tomic  symbols. For 
a tomic  symbols,  we shall use strings of capital  l,atin lette~ 
and digits with single imbedded blanks.  Ex'm@es *~f 
a tomic  symbols  are 

A 
ABA 
A P P L E  P I E  N U M B E R  3 

There  is a twofold reason for depar t ing  from the usual 
mathemat ieM pract ice of using single letters for atomic 
synlbols. First, compute r  programs frequent ly  requir<' 
hundreds  of dist inguishable symbols  thai, nmst  be formed 
f rom the 47 characters  t ha t  are pr intable  by the IBM 7N 
computer .  Second, it is convenient  to allow English wo~ds 
and  phrases to s tand for a tomic  enti t ies for mnem(mic 
reasons. The  symbols  are a tomic in the sense tha t  any sui:- 
s t ructure  they m a y  have  as sequences of characters is it, 
nored. We assume only that= different symbols  cam be 
distinguished. 
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S-expressi(>ns are th.el~ def ined  as follows: 
1. M()mic symbols  are S-expressions° 
i?. If e~ alld e.., are S-expressions,  so is (el 'e2).  
Examples of S-expressions a r e  

AB 
(~v. B) 
( t A B . O ) - D )  

An S-expression is then s i m p l y  an ordered pair, the 
wrms of which m a y  be a tomic  symbols  or simpler S-expres- 
si,ms. We can represent  a tist of a rb i t r a ry  length in terms 
<>f S-expressions as follows. T h e  list 

(m~,  me, "'" ,m, , )  

is represented by the S-express ion  

(m t - i m p ' (  . . . .  ( m , , - N [ L ) . . . ) ) )  

ilere N I L  is an a tomic s y m b o l  used to te rminate  lists. 
Si~me many  of the symbol i c  expressions with which we 

de:~.l are conveniently expressed  as lists, we shall introduce 
a lis~ imtation to abb rev ia t e  ce r ta in  S-expressions. We have 

1. im)  siands for ( r e . N I L ) .  
2. (m~ , . ,  . , m , )  s t ands  for  (ml .  ( .  -. ( m , . N I L ) -  . - ) ) .  
'.~. ( m , ,  - . -  , m, , .x)  s t a n d s  :for (mr '  ( - - - ( m , , . x ) . . .  )).  

Subexpressions can be s imi lar ly  abbreviated.  Some 
examples of these a b b r e v i a t i o n s  are 

{(AB, C), l ) )  for ( ( A B - ( C - N I L ) ) . ( D . N I L ) )  
( ~ A , B ) , C ,  I ) . E )  for ( ( A . ( B - N I L ) ) . ( C . ( D . E ) ) )  

Nince we regard the express ions  with commas  as abbre-  
viation,s for those not  invo lv ing  commas,  we shall refer to 
~hem all as S-expressions. 

b. ["~mc~ions of S-expressions and the Expressions 77~at 
t~q,'~,~ent Them. We now define a class of functions of 
S-expressions. The  express ions  representing these ftmc- 
~io~s are written in a conven t iona l  functional  notation. 
tIowever, in order to c lear ly  distinguish the expressions 
rvpresenting fmmtions f rom S:expressions, we shall use 
~quences of lower-case l e t t e r s  for function names and 
variabk~s ravaging over the s e t  of S-expressions. We also 
~ brackets and  semicolons,  instead of parentheses and 
commas, for denoting the  app l ica t ion  of functions to their 
arguments.  T h u s  we write 

c a r  [x] 
car [cons [ ( A . B ) ;  x]] 

I~ these M-expressions (meta.-expressions)  any  S-expres- 
sions that  oeetlr s t a n d  for  themselves .  

e, The tflemerttary S:functions and Predicates. We intro- 
<t~ee the following funct ions  a n d  predicates:  

L atom. a tom [x] has  t he  value of T or F, accordingly 
as x is an atomic symbol  or no t .  Thus  

atom IX] = T 
atom [ iX.A)]  = F 

2. eq. eq Ix; 3'] is defined if "rod on ly  if bo th  x and y 
are atomic, eq Ix; y] = T if x a n d  y a r e  the  same symbol, 
and eq Ix; Yl = F otherwise. T h u s  

eq [X; X] = T 
eq IX; A] = F 
eq [X; (X .A) ]  is undefined. 

3. ear. car Ix] is defined if "rod o n l y  if x is not atomic. 
car [(e~.ee)] = el .  Thus  car [XI is undef ined.  

car [ (X.A)I  = X 
ear [ ( ( X . A ) . Y ) ]  = i X . A )  

4. edr. cdr Ix] is also defined when  x is not atomic. 
We have cdr [ (< 'e~)l  = < .  T h u s  edr  {X] is undefined. 

cdr [ ( X . A ) ]  = A 
edr [ ( ( X . A ) - Y ) ]  =: 55 

5. cons. cons Ix; y] is defined fo r  a n y  x and y. We 
have cons [e~ ; e~] = (e1.e~). T h u s  

cons [X; A1 = iX.  A) 
cons [ i X . A ) ;  Y] = ( ( X - A ) . Y )  

ear, cdr, a n d  cons ,~i'e easily seen to sa t i s fy  the  relations 

ear [cons [x; y]] = x 
cdr [cons {x; y]] = y 
cons [car [x]; cdr [x/1 = x,  p rov ided  t h a t  x is not. atomic. 

The nantes "ca r"  and "cons"  will come  to  have mne- 
monic significance only when we discuss  the  representat ion 
of the system in the computer.  C o m p o s i t i o n s  of  car and cdr 
give the subexpressions of a given express ion  in a given 
position. Composit ions of cons fo rm express ions  of a given 
structure out of paris. The class of f u n c t i o n s  which can be 
formed in this way is quite l imited a n d  not  v e r y  interesting. 

d. Recur,s@e S-functions. We gel; a n m c h  larger class of 
functions (in fact, all compu tab le  func t ions )  when we 
allow ourselves to form new func t ions  of S-expressions by 
conditional expressions and recurs ive  defini t ion.  

We now give some examples  of f u n c t i o n s  tha t  are de- 
finable in this way. 

1. ff [x]. The value of ff Ix] is t h e  f i rs t  a tomic  symbol 
of the S-expression x with the p a r e n t h e s e s  ignored. Thus 

ff [ ( ( A . B ) . C ) ]  = a 

W e  have 

ff [x] = [atom [x] -~  x; T - -~ff  [ear [x]]l 

We now t rac t  in detail the s t eps  in t h e  evaluat ion of 
ff [ ( ( A . B ) , C ) ] :  

ff [ ( ( A . B ) . C ) ]  

= [atom [ ( ( A . B ) . C ) ] - - ~  ( ( A . B ) - C ) ;  

T - - ~  ff lear [ ( ( A . B ) ' C ) l l l  

= iF "-+ ( ( A . B ) . C ) ; T  -~f ' f  [ear [ ( ( A - B ) . C ) ] ] ]  

= [T --~ t'f (ear I ( (A.B)"C)111 
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= ff [ear [ ( ( A . B ) . C ) ] ]  

: ff [ (A .B) ]  

= [atom [ (A .B) ]  -+ ( A . B ) ;  T --> ff [ear [ (A.B)]]]  

= [F + ( A . B ) ;  T - ~ f f  [eat" [(m.*{)]]] 

= [T --+ff [car [(A.B)]]]  

= ff lear [ (A.B)]]  

: ff [A] 

= [atom [A] --~ A; T --+ ff [ear [A]]] 

= [T ~ A; T --, ff [car [A]]] 

= A  

2. subst  Ix; y ;  z]. This  funct ion gives the result of 
subst i tut ing the S-expression x for all occurrences of the 
a tomic symbol  y in the S-expression z. I t  is defined by  

subst  Ix; y;  z] = [atom [z] --+ [eq [z; y] -+ x; T --~ z]; 

T + cons [subst Ix; y;  ear  [z]]; subst Ix; y;  edr [z]l]] 

As an example,  we have 

subst [ ( X . A ) ;  B; ((A-B)-C)] = ( ( A - ( X . A ) ) - C )  

3. equal  [x; y]. This  is a predicate tha t  has the value 
T if x and y are the same S-expression, and has the value 
I v otherwise. We have 

equal Ix; y] = [atom [x] /~  a t o m  [y] /~ eq Ix; y]] 

V [~-oatom [x] /~ ~ a t o m  [y] /~ equal  lear [x]; car [y]] 

/~ equal [edr [x]; edr [yl]l 

I t  is convenient  to see how the e lementary  functions 
look in the abbrevia ted  list notat ion.  The  reader will 
easily verify tha t  

(i) ear [ (ml ,  m2, . . .  , m , ) ]  = ml 

( i i )  edr [ ( m , ,  m2, " "  , m ~ ) ]  = ( m 2 ,  . . "  , m~)  

(iii) cdr [(m)] = N I L  

(iv) c o n s [ m , ; ( m 2 , ' " , m , , ) ]  = ( m l , m ~ , ' " , m , , )  

(v)  cons [m; NIL]  = (m)  

We define 

null [x] = a tom [x] A eq [x; NIL]  

This  predicate  is useful in dealing with lists. 
Composit ions of ear and edr arise so f requent ly  tha t  

many  expressions can be wri t ten more concisely if we 

abbreviate  

eadr [x] for ear [edr [x]], 

eaddr  [x] for ear [edr [edr [x]]], etc. 

Another  useful abbreviat ion is to write list [e~ ; e= ; • • • ; e~] 
for  cons [el ; cons [e2 ; • • • ; cons [e. ; N I L ] - .  • ]]. This  func- 
t ion gives the list, ( e , ,  . . -  , e . ) ,  as a hmet ion  of its ele- 

ments .  

The following functions are useful when S-expressior~s 
are regarded as lists. 

1. append [x; y]. 

append Ix; y] = [mdI [x] -+ y;  T ~ cons [ca," [x]; 

append [cdr [x]; y]]] 

An example is 

append [(A, B ) ;  (C, l) ,  E)]  = (A, B, C, D, ]i;) 

2. among [x; y]. This predicate is t rue if the S-ex- 
pression x occurs among the elements of the lis~ y. We have 

among Ix; y] = ~--mull [y] /~ [equal [x; ear [y]] 

V among [x; cdr D']]] 

3. pair Ix; y]. This function gives the list of pairs of 
corresponding elements of the lists x and y, We have 

pair Ix; y] = [null [ x ] / \  null [y] -+ N I L ;  -- ,atom [xl 

/~ ~-~atom [y] -+ cons [lisg lear Ix]; ear [y]]; 

pair [edr Ix]; cdr [y]]]] 

An example is 

pair [(A, B, C) ;  (X, (Y, Z),  U)] = ((A, X) ,  

(B, (Y, Z)), (C, C)) 

4. assoe [x;y].  If y is a list of the form ( (u t ,  v,), 
• • • , (m~, v~) ) and x is one of the u's, then assoe [x; Yl is 

the corresponding v. We have 

assoc [x; y] = ecl[caar [y]; x] -+ eadar [y] ; 

T --~ assoc Ix; ode [y}]] 

An example is 

assoe IX; ( (W,  (A, B ) ) ,  (X,  (C, D ) ) ,  

(Y, (E, F ) ) ) ]  : (C, ~)) 

5. sublis [x; y]. Here x is assumed to have the form 
of a list of pairs ( (u~,  v , ) ,  • .. , (u, , ,  v , ) ) ,  where the u% 
are atomic, and y may be any S-expression. The value of 
sublis [x; y] is tile result of substi tut ing each v for the cor- 
responding u in y. In order to define sublis, we first defi~e 
an auxiliary function. We have 

sub2 [x; z] = [null Ix] -+ z; eq [eaar [x]; z] ~ eadar [x]; 

T -+  sub2 [cdr [x]; z]] 

and 

sublis Ix; Yl = [atom [y] --~ sub2 [x; y]; 

T ~ cons [sublis [x; ear [y]]; sublis [x; edr [y]i] 

We have 

sublis [ ( (X,  (A, B ) ) ,  (Y, (B, C ) ) ) ;  (A, X . Y ) ]  

= (a, (a, B), B, c) 
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e. R~¢prese,zlation of S-Functions by S-Expressions. 
S.func[ions have bem~ described by M-expressions. We 
now give a rule for t, ranslating M-expressions into S- 
expressions, ii, order to be able to use S-functions for 
making certain computations with S-functions and for 
aaswering certain questions about S-functions. 

The translation is determined by the following rules in 
which we denote ~he translation of an M-expression 8 by 

1. If g is an S-expression E* is (QUOTE, 8). 
2. Variables and function names that  were represented 

by strings of lower-case letters are translated to the cor- 
responding strings of the corresponding upper-case letters. 
Thus car* is CAR, and subst* is SUBST. 

3. A form fie, ; . • • ; en] is translated to (f*, e~*, • - • , en*). 
Thus {cons {ear [x]; edr [x]l}* is (CONS, (CAR, X), 
CDR, X)). 

4. {[p, -+ e, ; . . .  ; p,, -+ e,]}* is (COND, (p**, e**), 

. . ,  (p,,*. e,,*)). 
5. {X[[x, ; . ."  ; x,]; g]}* is (LAMBDA, (x~*, --- , x,,*), 

~;*). 
6. {label [a; a]}* is (LABEL, a*, g*). 
With these conventions the substitution function whose 

M-expression is label [subst; X[[x; y; z]; [atom [z] -+ 
[eq [y; z] -~, x; T --~ z]; T --~ cons [subst [x; y; ear [z]]; 
subst Ix; y; cdr [z]]]]l] has the S-expression 

(LABEL,  SUEST, (I.MMI~DA, (X, Y, Z), (COND 

((ATOM, Z), (COND, (EQ, Y, Z), X), ((QUOTE, 

T), Z))) ,  ((QUOTE, T),  (CONS, (SUBST, X, Y, 

(CAI~ Z)),  (SUBST, X, Y, (CDR, Z ) ) ) ) ) ) )  

This notation is writable and somewhat readable. I t  can 
be made easier tO read and write at the cost of making its 
structure less regular. If more characters were available 
on the computer, it could be improved considerably. 

f. The Universal S-Function apply. There is an S-func- 
tion apply with the property that  if f is an S-expression for 
art S-function f' and args is a list of arguments of the form 
(argl, . . .  , argn), where argl, . . ' ,  argn are arbitrary 
S-expressions, then apply{f; args] and f'[argl; . ."  ; argn] 
arc defined for the same vahms of argl, . . .  , argn, and are 
equal when defined. For example, 

X[[x; y]; cons [car [x]; yl] [(A, B);  (C, D)] 

= apply [(LAMBDA, (X, Y), (CONS, (CAR, X), 

y ) ) ;  ((A, B), (C, D))] = (A, C, D) 

The S-function apply is defined by 

apply If; a r g s ] =  eval [cons If; appq [args]]; NIL] 

where 

appq [m] = {null [m] -+ NIL;  

T -~ cons {list [QUOTE; car [m]]; appq [cdr [m]]]] 

and, 

eval [e; a] = [ 

atom [e] --+ assoc [e; a]; 

atom [car [e]] --+ [ 

eq {ear [e]; QUOTE] -~ cadr [e]; 

eq [car [e]; ATOM] -÷ atom [eval [cadr [e]; a]]; 

eq [cal" [e]; EQ] --~ [eval [cadr [e]; a] = eval [cad& [e]; a]]; 

eq [car {el; CON])] --~ evcon [edr [e]; a]; 

eq [ear" [e]; CAR] --~ ear [eval [cadr [el; a]]; 

eq [car [e]; CDR] --~ cdr [eval [cadr [e]; a]]; 

eq [car {el; CONS] --~ cons [eval [eadr {el; a]; eval [eaddr {el ; 

a]]; T --+ eval [cons [assoe {ear {el; a]; 

evlis [edr [e]; all; a]]; 

eq [caar [e]; LABEL] --~ eval [cons [eaddar {el; cdr [e]]; 

cons {list [cadar {el; car [e]; a]]; 

eq [eaar [e]; LAMBDA] -+ ewd [caddar [e]; 

append [pair [ca.dar {el; evils [cdr {el; a]; a]]] 

and 

evcon [c; a] = [eval [caar [e]; a] -~ eval [eadar [c]; al; 

T --~ evcon [cdr [c]; a]] 

and 

evils [m; a] = [uull [m] --+ NIL;  

T -~ cons [eval [car [m]; a]; evlis [cdr [m]; a]]] 

We now explain a number of points about these defini- 

tions. 
1. apply itself forms an expression representing the 

value of the function applied to the arguments, and puts 
the work of evaluating this expression onto a function eval. 
I t  uses appq to put quotes around each of the arguments, 
so that eval will regard them as standing for themselves. 

2. eval [e; a] has two arguments, an expression e to be 
evahmted, and a list of pairs a. The first item of each pair 
is an atomic symbol, and the second is the expression for 
which the symbol stands. 

3. If the expression to be evaluated is atomic, eval 
evaluates whatever is paired with it first on the list a. 

4. If e is not atomic but car [e] is atomic, then the expres- 
' ~' (ATOM, e) or sion has one of the forms (QUO I'E, e) or 

(EQ, el ,  e2) or (COND, (pl ,  e , ) , . . . ,  (P,,, e,,)), or 
(CAR, e) or (CDR, e) or (CONS, e , ,  e2) or (f, e, ,  . ."  , e,,) 
where f is an atomic symbol. 

In the case (QUOTE; e) the expression e, itself, is taken. 
In the case of (ATOM, e) or (CAR, e) or (CDR, e) the 
expression e is evaluated and the appropriate function 
taken. In the case of (EQ, el ,  e2) or (CONS, el, e~) two 
expressions have to be evaluated. In the case of (COND, 
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(p~, el), - . .  , (p,~, e , ) )  the p's havo to be evaluated  in 
order until a true p is found, and theH the eorresponding o 
must  be evaluated.  This is accomplished by eveon. Finally, 
in the case of (f, o , ,  . . .  , on) we evaluate t, he expression 
that  results from replacing f in this expression by  whatever  
it; is paired with in the list a. 

5. The  evaluat ion of ((LABEI~,  f, g),  e~, • - • , e,,) is 'te- 
complished by evaluat ing (8, o~ , • .. , e~) with the pairing 
(f, (LABEL,  f, 8)) put  on the front of the previous list, a 
of pairs. 

6. Finally, the evaluation of ( (LA MBDA, (x~, • - - , x,~), 
~), e~, . . .  , e,~) is accomplished by evaluating ~; with tho 
list of pairs ( ( x t ,  o~), . . .  , ( (xn ,  o , ) )  put  on the front of 
the previous list a. 

The  list a could be eliminated, and L A M B D A  and 
LABEl ,  exprossions evaluated by substi tut ing the argu- 
ments  for the variables in. the expressions ~;. Unfortu- 
nately,  difficulties involving collisions of bound variables 
arise, but  they are avoided by using the list a. 

Calculating the values of functions by using apply is an 
act ivi ty  bet ter  suited to electronic computers than to 
people. As an illustration, however, we now give some of 
the steps for calculating 

apply [ (LABEL,  FF, ( L A M B D A ,  (X) ,  (COND,  

((ATOM, X), X), ((QUOTE, T) ,  

(FF, (Ca~ ,  X ) ) ) ) ) ) ;  ( (A.B)) ]  = 

The  first argument  is tho S-expression that  represents the 
function ff defined in seetion 3d. We shall abbrevia te  it 
by using the lettor ¢. Wo have 

apply  [~; ( ( A - B ) ) ]  

= e v a I [ ( ( L A B E L ,  FF,  ¢),  (QUOTE,  ( A - B ) ) ) ;  NIL] 

where ¢ is tho part  of ¢ beginning ( L A M B D A  

= e v a l [ ( ( L A M B D A ,  (X) ,  ~o), (QUOTE,  ( A . B ) ) ) ;  

( (FF ,  ¢) ) ]  

where ca is the part  of ¢ beginning ( C O N D  

= e v a l  [ (CONI) ,  (rr~, et), (~r~, e=)); ( (X ,  (QUOTE,  

( A . B ) ) ) ,  (FF,  ¢ ) ) ]  

Denoting ( (X, (QUOTE,  ( A- B ) ) ), (FF ,  ¢)  ) by a, 
wo obtain 

= ovoon [( (~-~, ~), (~r~, ~.) ) ; ~*1 

This involves eval [~rt ; co] 

= eval [ (ATOM, X ) ;  a] 

= a tom loyal iX; a]] 

= a tom loyal [assoe iX; ( (X, (QUOTE,  (A.  B) ) ), 

(FF,  ¢ ) ) ] ;  all 

= a tom [oval [ (QUOTE,  (A. B ) ) ;  a]] 

= a tom [ (A.B) ]  

= F  
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()ur main caleulation contirmes wiih 

apply [¢5; ( (A.  B))]  

= ore, on [ ( ( ~ ,  ~ ) ) '  ~t, 

which involves oval [~  ; a] = eva[ [(Q[YOTE, T ) ;  ~] = T. :~ 
Our main calculation again eontim~es with 

apply [¢; ( (A.  B) )] 

= oval [e2 ; a] 

= eval [ (FF,  (CAR, X ) ) ;  a] 

= e v a l  [cons [4; evils [ ( (CAR, X ) ) ;  a]]; a] i' 

Evaluating evlis [((C, AR, X) )  ; a] involves 

' k  oval [(c~ t{, x )  ,~l 
! i  

- ear [oval [X; all] 

= ear [ (A 'B)I ,  where we took steps from the earli~,r '(  
computat ion of a.tom loyal IX; all = A, 

and so evils i t (CAR,  X ) )  ; a] then becomes .... ., 

list [list [QUOTt!;; A]] = ( ( Q U ) r E ,  A)) ~. 

and otlr main quant i ty  becomes 

eva| [(4,, (q~Jo IL, x)) ;  ~] { 
{ 

The  subsequent steps are made as in tho begimfing ,,f 
the calculation. The  L A B E L  and L A M B D A  cause i~(:~*.' ' {{:: 
pairs to be added to ~, which gives a new list; of pairs < .  i 
The  rr, term of the conditional oval [ (ATOM, X) ;  <! h> :~, 
the value 32 t)oeause X is paired with (Q[  O 1 E, A)tirst :i~ 

. . . . .  c . in a l ,  rather  than with ( Q U O I E ,  (A B) )  as in c~. 
Therefore we end up with oval iX; a~] fl'om the .e~'co~, 

'rod this is just A. 

g. Functions with Functions as Arguments. There are a 
number  of useflfl functions some of whose arguments are 
functions. They  are especially useful in defining othe|" rune- ~- 
tions. One such function is maplist ix; f] with an S-expres- 
sion argument  x and an argument  f that, is a function from 
S-expressions to S-expressions. Wo define :, 

lnaplist [x; fl = [null [xl --~ NIL ;  

T --+ cons [fix]; maplist [cdr ix]; i'1 ~] , 

:['he usefulness of maplist is illustrated by fornmlas for ii 
the part ial  derivat ive with rospeet to x of expressions i~> 
volving sums and products  of x and other  variables. The 

!i S-expressions that  we shall differentiate are formed ~ : 
follows. ;~ 

1. An atomic symbol is an allowed expression. ~ 
2. If e~, e~, • • • , e ,  are allowed expressions, (PLUS, < ,  ~, 

. . .  , en) and ( T I M E S ,  e~, . . .  , e .)  arc also, a.nd represeld' 
the sum and product,  respectively, of e~, • • - , e , .  ;:. 

This  is, essentially, the Polish notat ion for functio~* 
except, tha t  the inclusion of paronthe~es and eoinmas tfl" 
lows functions of variablo numbers  of arguments.  An exa m~ 
ple of an allowed expression is ( T I M E S ,  X (t)L[~'S' 
X, A),  Y),  the conventional algebraic notati(m for whicD 
is X ( X  + A ) Y .  

t 
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Our different.fallen tormula, which gives the derivative 
of y with respecti (.() x, is 

diff [y; x] = [atom [y]---* [eq [y; x] -~, ON[i;; T --, ZEtIOI; 
eq [car [y]; PI,USI --~ cons [['LUS; maplist [cdr [y]; X[[z]; 
diff[car [z]; x]/I]; eq[car [y]; TIMES] --+ cons[PLUS; 
maplistledr[y]; X[[zl; cons [TIMES; maplist[cdr [y]; 
X[[w]; ~--~eq [z; w] -÷ car [w]; 1l' ~ diff' [car [[w]; xlll]]]] 

The derivative of the allowed expression, as computed 
by this formula, is 

(PLUS, (TIMES,  ONE, (I'IA;rs, X, A), Y), 

(TIMES, X, (PLUS, ONE, ZERO), Y),  

(TIMES,  X, (PLUS, X, A), ZERO))  

Besides maplist, another useful function with functional 
arguments is search, which is defined as 

search Ix; p; f; u] --- [null Ix] --+ u; p[x] --~ f[x]; 

T -+ search [cdr [x]; p; f; u] 

The function ,search is used to search a list for an element 
that has the property p, and if such an element is found, f 
of that element is taken. If there is no such element, the 
function u of no argument is computed. 

4. The LISP P r o g r a m m i n g  S y s t e m  

The LISP programming system is a system for using 
the IBM 704 computer to compute with symbolic informa- 
tion in the form of S-expressions. I t  has been or will be 
used for the following purposes: 

1. Writing a compiler to compile LISP programs into 
machine language. 

2. Writing a program t.o check proofs in a (:lass of 
formal logical systems. 

3. Writing programs for fornml differentiation and 
integration. 

4. Writing programs to realize various algorithms for 
generating proofs in predicate calculus. 

5. Making certain engineering calculations whose re- 
sults are formulas rather than numbers. 

6. Programming the Advice Taker system. 
The basis of the system is a way of writing computer 

programs to evaluate S-functions. This will be described 
in the following sections. 

In addition to the facilities for describing S-functions, 
there are facilities for using S-flmctions in programs 
written as sequences of statements along the lines of 
FORTRAN (4) or AL(;OI; (5). These features will not be 
described in tiffs article. 

(b) (c) 

I 

a. R<'4ffe,~entalio~ of £'-P~'xpre.~,~wns b:q List Structure. A 
list structttre is a collection of computer words arranged 
as in figure la or lb. Each word of the list structure is 
represented by one of the subdivided rectangles in the 
figure. The left box of a rectangle represents the address 
field of the word and the right box represents the decre- 
ment field. An arrow from a box ~;o another rectangle 
means that  the field corresponding to the box contains 
the location of the word corresponding to the other 
rectangle. 

I t  is permitted for a substructure to occur in more than 
one place in t~ list structm'e, as in figure lb. but it is no~ 
permitted for a sturcture to have cycles, as in figure le. 

An atomic symbol is represented in the computer by a 
list structure of special form called the association list of 
the symbol. The address field of the first word contains a 
special constant which enables the program to tell that  
this word represents an atomic symbol. We shall describe 
association lists in section 4b. 

(o) (b) 

l?m. 2 

An S-expression x that  is not atomic is represented by 
a word, the address and decrement parts of which contain 
tile locations of the subexpressions ear[x] and edr[x], 
respectively. If we use the symbols A, B, ere, to denote 
the locations of the association list of these symbols, then 
tile S-expression ( (A .B) . (C . (E .F ) ) )  is represented by 
the list structure a of figure 2. Turning to the list. form of 
S-expressions, we see that, tile S-expression (A, (B, C), D), ..... 
which is an abbreviation for (A . ( (B . (C-N[L) ) . (D-  
NIL))),  is represented by tile list structure of figure 2b. 
When a list structure is regarded as representing a list, 
we see that each term of the list occupies tile address 
part  of a word, the decrement part, of which points to the 
word containing the next term, while the last word has 
NIL  in its decrement. 

An expression that has a given subexpression occurring 
more than once can be represented in more than one w'~y. 
Whether the list structure for the subexpression is or is not 
repeated depends upon the history of the program. 
Whether or not a subexpression is repeated will make no 
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difference in the results of a program as they appear out- 
side the machine, although it will affect the time and 
storage requirements. For example, t t~e S-('xpressio~ 
((A. B). (A. B)) can be represented by either the list. struc- 
ture of figure 3a or 3b. 

~o} {b) 

F~G. 3 

Tile prohibition against circular list, structures is es- 
sentially a prohibition against an expression being a sub- 
expression of itself. Such an expression could not exis~ ot~ 
paper in a world with our topology. Circular l:]st structures 
would have some advantages in the machine, for example, 
for representing recursive hmctions, but difficulties in 
printing them, and in certain other operations, make it 
seem advisable not to use them for the present. 

The advantages of list structures for the storage of 
symbolic expressions are: 

1. The size and even the number of expressions with 
which the program will have to deal cannot be predicted 
in advance. Therefore, it is difficult to arrange blocks of 
storage of fixed length to contain them. 

2. Registers can be put back on the free-storage list 
when they are no longer needed. Even one register re- 
turned to the list is of value, but if expressions are stored 
linearly, it is difficult to make use of blocks of registers of 
odd sizes that  may  become available. 

3. An expression tha t  occurs as a subexpression of 
several expressions need be represented in storage only 
once. 

b. Association Lists. In the LIsP programming system 
we put more in the association list of a symbol than is 
required by the mathematical  system described in the 
previous sections. In fact, any information that  we desire 
to associate with the symbol nmy be put on the associa- 
tion list. This information may include: the print name, 
that  is, the string of letters and digits which represents 
the symbol outside the machine; a numerical value if 
the symbol represents a number; another S-expression 
if the symbol, in some way, serves as a name for it; or the 
location of a routine if the symbol represents a functior~ 
for which there is a machine-language subroutine. All this 
implies that  in the machine system there are more prirni- 
tive entities than have been described in the: sections on 
the mathematical system. 

For the present, we shall only describe how print  names 
are represented on association lists so that  in reading or 
printing the program can establish a correspondence 
between information on punched cards, magr:Jetic tape or 
printed page and the list structure inside the machine. 
The association list. of the symbol DIFFEI{t~3NTIATt?] has a 
segment (ff the form shown in figure 4, Here lmame is a 
symbol that  indicates that  the struett~re for the. print 
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~mme of the symbol who~e asso(qaEi(m list this is hangs 
from the uext~ word <m ~h(, association list. l:n the second 
row of the figure w(, have a list of three words. The address 
-part of each of t h ~ c  words polaris to ~ word containing 
six (i4:)it. characters. The last, uord is filled (:)~tt with a 
6.t:)iC combination that  do(,s not~ represent a character 
t)rilltable by the computer. (Ilecall thai, the IBM 704 has 
a 36-bit word a:ud that  printable eh~raeters are each 
represented by 6 bits.) The presence of tile words with 
character inform~tion means that the association lists do 
~of themselves represen{; S-exl:)ressiotls, :.rod that only 
some of the rum, rictus for dealing with S-expressions make 
sense within as association list. 

c. Free-Storaf/c List. At. any given time only a part of 
the memory reserved for list, structures will actually be in 
use for storing S-expressions, The remaining registers (in 
ore' system the number, initially, is approxima{,ely 15,000) 
are arranged in a single list c.dled the fl'ee-.stora,qe liet. A 
cert:dn register, :Fm,:E, in the program contains the loca- 
ti(:m of the first register in this list. When a word is re- 
quired to form some additional list structure, the first 
word on the fl'ee-,s'torage list is taken and the number in 
register FaEE is changed to become the location of the 
second word on the free-storage list. No provision need be 
made for the user to program the return of registers to the 
free-st.orage list. 

This return takes place atttoInatieally, approximately 
as follows (it is necessary to give a simplified deseriptiol~ 
of this process in this report): There is a fixed set of base 
registers in the program which contains the locations of ~f 
list structures that, are accessible to the program. Of ] 
course, because list structures branch, an arbitrary num- 

ber of registers may  be involved. Each register that is } 
accessible to the program is accessible because it can be 
reached from one or more of the base registers by a chain 
of car and edr operations. When the contents of a base 
register are changed, it may  happen that  the register Co 
which the base register formerly pointed cannot be reached 
by a car-cdr chain from any base register. Such a register 
may be considered abandoned by the program because its 
contents can no longer be found by any possible program; 
hence its contents are no longer of interest, and so we 
would like to have it back on the free-storage list. This ,' 
comes about in the following way. t 

Nothing happens until the program runs out of free 
storage. WherJ a free register is wanted, and there :is none 
left on the free-storage list, a reclamation cycle starts. 

. - .  - - .  

Fm, 4 

First, the program finds all registers accessible from the t 
base registers and makes their signs negative. This is ! 
accomplished by starting from each of the base registers i 
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and changing the sign of every register tha t  can be reached 
from it by a car-cdr chain. If the program encounters a 
register in this process which already has a negative sign, 
it assumes that  this register has already been reached. 

After all of the accessible registers have had their signs 
changed, the program goes through the area of memory 
reserved for the storage of list structures and puts all the 
registers whose signs were not changed in the previous 
step back on the free-storage list, and makes the signs of 
the accessible registers positive again. 

This process, because it is entirely automatic, is more 
convenient for the programmer than a system in which 
he has to keep t rack of and erase unwanted lists. Its effi- 
ciency depends upon not coming close to exhausting the 
available memory with accessible lists. This is because the 
reclamation process requires several seconds to execute, 
and therefore must  result in the addition of at  least 
several thousand registers to the free-storage list if the 
program is not to spend most of its time in reclamation. 

d. Elementary S-Functions in the Computer. We shall 
now describe the computer representations of atom, = ,  
ear, cdr, and cons. An S-expression is communicated to 
the program that  represents a function as the location of 
the word representing it, and the programs give S-expres- 
sion answers in the same form. 

atom. As stated above, a word representing an atomic 
symbol has a special constant in its address part :  atom is 
programmed as an open subroutine that  tests this part. 
Unless the M-expression atom[e] occurs as a condition in 
a conditional expression, the symbol T or F is generated 
as the result of the test. In ease of a conditional expression, 
a conditional transfer is used and the symbol T or F is 
not generated. 

eq. The program for eq[e; f] involves testing for the 
numerical equality of the locations of the words. This 
works because each atomic symbol has only one association 
list. As with atom, the result is either a conditional transfer 
or one of the symbols T or F. 

car. Computing car[x] involves getting the contents 
of the _address par t  of register x. This is essentially accom- 
plished by the single instruction ci~a 0, i, where the argu- 
ment is in index register i, and the result appears in the 
address par t  of the accumulator. (We take the view that 
the places from which a function takes its arguments and 
into which it puts  its results are prescribed in the defini- 
tion of the function, and it is the responsibility of the 
programmer or the compiler to insert the required data- 
moving instructions to get the results of one calculation 
in position for the next.) ("car"  is a mnemonic for "con- 
tents of the _address part  of register.") 

edr. edr is handled in the same way as ear, except that  
the result appears in the decrement part  of the accumu- 
lator. ("edr"  stands for "cgntents of the decrement part 
of register.") 

cons. The value of cons[x; y] must be the location of a 
register tha t  has x and y in its address and decrement 
parts, respectively. There may not  be such a register in 

the computer and, even if there were, it would be time- 
consuming to find it. Actually, what  we do is to  take the 
first available register from the free-storage list, put  x and 
y in tlhe address and decrement parts, respectively, and 
make the value of the function the location of the register 
taken. ("cons" is an abbreviation for "construct.")  

It, is the subroutine for cons tha t  initiates the reclama- 
tion when the free-storage list is exhausted. In the version 
of the system that  is used at present cons is represented 
by a closed subroutine. In the compiled version, cons is 
open. 

e. Representation of S-Functions by Programs. The 
compilation of functions that  are compositions of ear, 
cdr, and cons, either by hand or by a compiler program, 
is straightforward. Conditional expressions give no trouble 
except that  they must be so compiled that  only the p's 
and e's that  are required are computed. However, prob- 
lems arise in the compilation of reeursive functions. 

In general (we shall discuss an exception), the routine 
for a recursive function uses itself as a subroutine. For  
example, the program for subst[x;y;z] uses itself as 
a subroutine to evaluate the result into the subexpres- 
sions ear[z] and cdr[z]. While subst[x;y:edr[z]] is being 
evaluated, the result of the previous evaluation of 
subst[x; y;  car[z]] must be saved in a temporary storage 
register. However, subst may need the same register for 
evaluating subst[x;y;edr[z]]. This possible conflict is re- 
solved by the SAVE and UNSAVE routines that  use 
the public push-down list. The SAVE routine is entered 
at  the beginning of the routine for the reeursive function 
with a request to save a given set of consecutive registers. 
A block of registers called the public push-down list is 
reserved for this purpose. The SAVE routine has an index 
that  tells it how many registers in the push-down list are 
already in use. I t  moves the contents of the registers 
which are to be saved to the first unused registers in the 
push-down list, advances the index of the list, and returns 
to the program from which control came. This program 
may then freely use these registers for temporary storage. 
Before the routine exits it uses UNSAVE, which restores 
the contents of the temporary registers from the push- 
down list and moves back the index of this list. The result 
of these conventions is described, in programming termi- 
nology, by saying that the reeursive subroutine is trans- 
parent to the temporary storage registers. 

f. Status of the LISP Programming System (February 
1960). A variant of the function apply described in section 
5f has been translated into a program APPLY for the 
IBM 704. Since this routine can compute values of S- 
functions given their descriptions as S-expressions and 
their arguments, it serves as an interpreter for the Lisp 
programming language which describes computation 

processes in this way. 
The program APPLY has been imbedded in the Lisp 

programming system which has the following features: 
1. The programmer may define any number of S-fune- 
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tions by S-expressions. These ftmctions may refer to each 
other or to certain S-functions represet~ted by machine 
language program. 

2. The vMues of defined functions may be computed. 
3. S-expressions may be read and printed (directly or 

via magnetic tape). 
4. Some error diagnostic and selective tracing facilities 

are included. 
5. The programmer may have selected S-function,s 

compiled into machine language programs put into the 
core memory. Values of compiled functions are computed 
about 60 times as fast as they would if interpreted. Corn- 
pilaf}on is fast, enough so that  it is not necessary t,o punch 
compiled program for future use. 

6. A "program feature" allows programs containing 
assignment and  go to  staternents in the style of ALl;eL. 

7. Computation with floating point num/)ers is possible 
in the system but, this is inefficient. 

8. A programmer's manuM is being prepared. 
The Lisp programming system is appropriate for corn- 

putations where the data can conveniently be represented 
as symbolic expressions allowing expressions of the same 
kind as subexpressions. A version of the system for the 
IBM 709 is being prepared. 

5. A n o t h e r  F o r m a l i s m  for  F u n c t i o n s  of  Symbol ic  
E x p r e s s i o n s  

There are a number of ways of defining functions of 
symbolic expressions which are quite similar to the system 
we have adopted. Each of them involves three basic func- 
tions, conditional expressions, and recursivc function 
definitions, but  the class of exprcssions corresponding to 
S-expressions is different, and so are the precise definitions 
of the functions. We shall describe one of these variams 
called linear IASP. 

The L-expressions are defined as follows: 
1. A finite list, of Characters is admitted. 
2. Any string of admitted characters'ia an L-expression. 

This includes the null st, ring denoted by A. 
There are t,hree functions of strings: 
1. firs}Ix] is the first character of the string x. 

first[A] is undefined. 
For example: first[ABC] = A 

2. rest[x] is the string of characters which remains when 
the first character of the string is deleted. 

rest[A] is undefined. 
For example: resf[ABC] = BC 

3. eombineIx; y] is the string formed by prefixing the 
character x to the string y. 
For example: combine[A; BC] = ABC 

There are three predicates on strings: 
1. char[x], x is a single character. 
2. null[x], x is the null string. 
3. x = y, defined for x and y characters. 
The advantage of linear L~sP is that no characters are 

given special roles, as are parentheses, dots, and commas 
ill LISP, This permits computations with all expressions 
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that ca*it be writ Ien li:aearly. The disadva~.iiage of m~ea~ 
W~ LisP is that; ~he extraction of subexpressions is a faith. I ;!: 

involved, rather than an elementary operat, ion, It  Is ~)t ': si~] 
hard to write, in linear L~s>, functions that correspoad i:,., g(e; 
the basic functions of L:~se, so that, mathematically, 
linear I,Ise includes L~st,. This turns out to be the mos~ 
convenient way of progr'~mming, i:n linear L:~se, the mor~, 
complicated manipulations. However, if the function> 
are to be represented by computer routines, Ltse is ess<~. 
tially faster. 

6. F l o w c h a r t s  a n d  R e c u r s } o n  

Since both the usual form of computer program m~d re- 
cursive function definitions are universal computationally, 
i~ is interesting to display the relation between them. The 
translation of recurs}re symbolic functions inlo compuier 
programs was the subject of the rest of this report, h~ ~his 
section we show how to go the o t te r  way, at least i~ 
prineipk. ~. 

The state of the machine at any time during a compu,a- 
lion is gNen by the values of a number of variables, l,e~ 
these variables be combined into a vector ~. Consider a 
program block with one entrance and one exit. It (teti~,es 
and is essentiMly defined by a certain function f tha~ 
takes one machine configuration into another, that is, f has 
the form ~' = f(~). Let us call f lhe associated functio,~ of 
the program block. Now let a number of such })locks i,  
combined into a program by decision elements u that (h,. 
eide after each t)lock is completed which block will }~a~ 
entered next. Nevertheless, let the whole program ~siil} 
have one entrance and one exit. 
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We give as an example the flowchart of figure 5. l,ei *~> 
0g { describe the function r[~] that gives the transformati(m ~ 

the vector ~ between entrance and exit of the whole block. 
{ 
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i'airl:i We shall (:tefi,~(~ il i,~ col~junction with lhe functions 
- ~[f/] and t[,~l, which give the /rausformations thai ~ under- 
2,1~{ I goes between the points S a,~d T respeclively and the exit. 
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Given a flowch'trt with a single, entrance and a single 
exit, it is easy ~(, write down the recursive function that 
gives the tr 'msformation of tim state vector from entrance 
to exit in terms of the corresponding functions for the 

!4 ̧ 

computation blocks and the predicates of tile branch 
points. In general, we proceed as follows. 

In figure 6, let ~ be an n-way branch point, and let 
fi, . . .  , f, be the computations leading to branch points 
fl~, f12, ' "  , fl . . . .  l~et 4) be the function that  transforms 
between fl and the exit of the chart,  and let (b~ , • " • , 4,~ be 
the corresponding functions for f l ~ , . . . ,  fl,~. We then 
write 

~[~] = [p~[~J --, ¢,[t',[}]]; . . .  ; p,,[}] ~ 0,,[f',,[}]]] 
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P a r t  1: T h e  T h r e a d e d  L i s t  L a n g u a g e  

1. I n t r o d u c t i o n  

In the field variously called artificial intelligence, 
heuristic programming, au tomata  theory, etc., many of 

* The work was SUl)ported in part by the Off:ice of Naval Re- 
search under contract munber Nonr.-760 (18), Nr 04(,)-141 and by 
the U. S. Army Signal (~orps under e(mtraet number l)a 36-039- 
8eq5081, File No. 0195-PH-58-91 (4461). 

the most interesting problems do not lend themselves 
readily to solutions formulated in the automatic program- 
ming systems now in wide use. Several new approaches 
to more adequate  and natural  programming systems have 
been made in the past few years. Notable among these 
are the list s t ructure  languages of the IPL  family developed 
by Newell-Simon-Shaw [1] and LISP by McCar thy  [2]. 
They provide great  flexibility for the construction of 
highly composed programs, and are able to represent and 
process systems of arbitrarily great complexity, subject 
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