
Growing Schemes
Twenty Years of Scheme Requests for Implementation

ARTHUR A. GLECKLER, Editor, Scheme Requests for Implementation, USA

SRFI[21], or Scheme Requests for Implementation, is an informal process for extending the Scheme programming language. It
has run in parallel with, and has sometimes contributed to, more formal Scheme standardization efforts like R6RS and R7RS.
Since the inception of SRFI in 1998, SRFI contributors have prepared 162 detailed documents proposing extensions to Scheme,
most with sample implementations, and many with test suites as well. SRFIs cover ideas like mechanisms for concurrency,
error handling, internationalization, and pattern matching; control constructs and data structures; module systems; operating
system interfaces; and more.

In this paper, we explain the purpose of the SRFI process, how the process works, and how it has been part of the evolution
of Scheme. We hope that implementers and users of Scheme and other programming languages can benefit from learning
about this approach to moving the language forward.

CCS Concepts: • Software and its engineering→ Language features;

Additional Key Words and Phrases: Scheme programming language, Scheme Requests for Implementation, standards

ACM Reference Format:
Arthur A. Gleckler. 2018. Growing Schemes: Twenty Years of Scheme Requests for Implementation. 1, 1 (September 2018),
18 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Twenty years ago, after an R5RSmeeting, thirty-two people attended the Scheme StrawmanWorkshop[22, 36]. The
workshop announcement said, “Our intent is to get users and implementors together to discuss their experiences
with existing extensions and to discuss possible extensions and modifications to Scheme.” The discussion that
started with that meeting has continued online ever since as SRFI, the Scheme Requests for Implementation.

1.1 Motivation
If you are a Scheme programmer, you may use more than one Scheme implementation, either because different
ones are suited for different operating systems, or because you prefer one for its performance but another for
its debugging tools, or because one is better for teaching and another is better for production, or for another
reason. But you would surely still like to be able to run code you wrote for one implementation on the others.
Formal Scheme standards like R5RS, R6RS[5], and R7RS[8] lay the groundwork, providing a concrete, portable
layer, but they only go so far. The Scheme Requests for Implementation process picks up where those standards
leave off. SRFI is a less formal way to propose new extensions to Scheme, to discuss them with other users, and
to encourage Scheme implementers to support them.

Author’s address: Arthur A. Gleckler, Editor, Scheme Requests for Implementation, Sunnyvale, CA, 94087, USA, srfi@speechcode.com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).
© 2018 Copyright held by the owner/author(s).
XXXX-XXXX/2018/9-ART
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: September 2018.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

:2 • Arthur A. Gleckler

1.2 Making use of SRFIs
There are many ways to make use of the SRFI process:

• If you need a specific data structure, or a portable operating system interface, or a testing framework, or
support for bitwise operations or concurrency or random numbers or regular expressions, or some other
library or extension to the language, you can turn to existing SRFIs. Your Scheme implementation may
already support the SRFI you want. If not, try using the provided sample implementation.

• If the feature you want exists in one implementation but not in others, you can document it clearly and use
the SRFI process to propose that other implementations adopt it.

• If you are the author or maintainer of an existing Scheme implementation, you can choose from a wide
variety of SRFIs and either use the provided sample implementations or write your own.

• If you are helping to create one of the official Scheme standards, e.g. an RnRS, you can use the SRFI process
to publish and discuss proposals for inclusion in your standard. Both R6RS[5] and R7RS-large[8] have done
this. Or you can simply draw ideas from SRFIs and incorporate them, as R7RS-small[8] did.

• You can participate in the discussion of proposed SRFIs, influencing their APIs and how they work,
contributing to their design and implementation, and encouraging the authors and maintainers of your
favorite Scheme implementations to adopt them.

2 HOW DOES THE SRFI PROCESS WORK?
For many use cases, the SRFI process is simple: review the SRFIs provided by the Scheme implementation being
used, find the one with the desired features, load it using that implementation’s standard mechanism, and use
it. If the implementation’s documentation doesn’t describe the SRFI, read the documentation on the SRFI web
site[21].

Each SRFI is identified by a unique number in addition to its title, so it’s easy to look it up. As of this writing,
there are 124 “final” SRFIs (see figure 1 and table 3) covering a wide variety of needs.

2.1 Requests
SRFIs are requests, not formal standards. The idea is that someone who wants a new feature to be added to
Scheme implementations can propose the feature, specify it in detail, provide a sample implementation and
automated tests, and discuss and revise the proposal publicly so that it is as understandable and useful as possible.
All this makes it as easy as possible for authors and maintainers of Scheme implementations to support the
requested feature.

Once a SRFI has been finished, or “finalized,” it’s up to the authors and maintainers of Scheme implementations
to decide whether to support it. But even if they don’t, support for a particular SRFI can often be added to an
implementation by its users.
The SRFI editors ensure that all the requirements are met before a SRFI can be finalized1. For example:
• Each SRFI document must be in HTML format.
• Each SRFI document must follow a standard template[20] that includes a rationale, a detailed specification,
a description of the sample implementation, an acknowledgements section, and an open-source copyright
statement.

• Sample implementations are required in all but the most unusual circumstances.2
• Automated tests are strongly encouraged.

1This work is done manually for the most part, but automated tests are run and spell checkers are used.
2Only five of the 124 final SRFIs — 18, 21, 22, 36, and 97 — do not include some form of sample implementation, either in the document itself,
elsewhere in the Git repo, or in some external location, e.g. as part of an existing Scheme implementation.

, Vol. 1, No. 1, Article . Publication date: September 2018.

Growing Schemes • :3

Per the SRFI process, the editors are not allowed to reject a proposal because they “...disagree with the
importance of the proposal, or because they think it is a wrong-headed approach to the problem. The editors
may, however, reject a proposal because it does not meet the requirements listed here[24].” An editor’s job is to
facilitate the discussion and dissemination of SRFIs, but not to approve or reject them based on the ideas they
contain.

Ultimately, each SRFI is the responsibility of its author. While the author may revise the SRFI based on public
discussion on the SRFI mailing list — and, indeed, this is common — the final decision whether to finalize it is up
to the author, assuming that the editor agrees that it meets the SRFI requirements.3 Once it is finalized, though,
it is up to the maintainers and users of Scheme implementations to decide whether to incorporate it into each
implementation. This approach gives many ideas the breathing room and support that they might not get with a
more consensus-driven process.

2.2 Email
The process of proposing and reviewing a new SRFI is organized around email. It is described in detail at [24],
but is summarized here.
An author proposing a new SRFI submits a proposal to the SRFI editor(s) at srfi-editors@srfi.schemers.org.

The proposal document must be in HTML format and must follow the standard template[20]. Once the editor
is satisfied that the proposal conforms to the SRFI requirements, the editor assigns it a unique SRFI number,
publishes it as a first draft on the SRFI web site, creates a public email mailing list specifically for discussion of
the new proposal, creates a Git[12] distributed version control repository on Github[17], and announces the new
SRFI and mailing list publicly.
Discussion of the SRFI is held on its public mailing list. Anyone may subscribe to any SRFI’s mailing list.

Any subscriber may participate in the discussion. All messages are not only delivered to every subscriber, but
are archived publicly on the web so that there’s a public, long-term, searchable record of all the decisions and
thinking that went into making the final SRFI, and of any alternatives that were discussed, objections that were
raised, etc.

Even after an SRFI is finalized, its email mailing list remains open. That way, clarifications and corrections can
be made and other discussion can occur even years later.

2.3 States
Each SRFI can be in one of several states: draft, final, and withdrawn. (See figure 1.) Each SRFI starts in the draft
state, and remains in that state through however many drafts are published as a result of discussion.
At any time while a SRFI is in the draft state, its author may decide that it is not ready for publication. The

editor will then move it into the withdrawn state and publicly announce that change. The withdrawn state is
permanent. Discussion may continue, but the SRFI has effectively been retired at that point. Later, the same
author or another author may decide to revive the proposal. In that case, a new SRFI is created and the process
starts over, leaving the original one untouched. SRFI numbers are not reused, and each withdrawn SRFI retains
its number.
If, after a thorough discussion and perhaps several drafts, the author decides that the SRFI is finished and

the editor agrees that all the requirements have been met (e.g. the document is clear and contains all the right
information and the sample implementation and tests work correctly), the editor places the SRFI into the final
state and publicly announces that change. After that happens, the specification is never changed except perhaps
to correct indisputable, unambiguous errors, e.g. grammar errors, typos, links to no-longer-existing web sites,

3The idea that the author controls the SRFI is sometimes difficult for reviewers to accept. Prior editors have had to work hard, when moderating
discussion of SRFIs, to get this point across.[45]

, Vol. 1, No. 1, Article . Publication date: September 2018.

mailto:srfi-editors@srfi.schemers.org

:4 • Arthur A. Gleckler

FINAL

 Publish errata.

WITHDRAWN

 Publish replacement.
DRAFT Publish first draft.

 Finalize.

 Withdraw.

 Publish new draft.

Fig. 1. SRFI state transitions

or self-contradictory statements. All substantial errata are announced on the SRFI’s mailing list and explained
in the document’s Status section with specially marked notes. Corrections or improvements to the sample
implementation are also allowed after finalization. Design flaws and substantial mistakes must be addressed in a
new SRFI. Note that withdrawn SRFIs are still present on the web site, in full — just marked withdrawn.

Occasionally, a new SRFI is created with the intention of replacing an older SRFI. The older, final SRFI may be
withdrawn, but only if a newer SRFI replaces it and the author of the original SRFI agrees. In that case, there will
be a “See also” link from the withdrawn SRFI to the new one on the home page. That way, implementers will
know that there is a new version. This is the only official way to deprecate an SRFI. Several SRFIs have gone
through this transition, e.g. SRFIs 40 (replaced by 41), 114 (obsoleted by 128), and 142 (obsoleted by 151).

Note that the sample implementation for a SRFI is not necessarily portable code. Some SRFIs propose extensions
to the language that cannot be made without deep changes to the implementation itself. In that case, the sample
implementation is to be used as an example rather than ported directly.

2.4 Version control
All changes to the specification document, the sample implementation, and any other code or documents that
comprise an SRFI are recorded in its public version control repository. We4 use the Git[12] version control system
because it is popular and practical and because it is distributed, which means that anyone can easily make a copy
of the repository, make changes to that copy independently, and offer those changes for inclusion in the draft
SRFI (or to fix errata).
While we use Github to host the repositories for all of the SRFIs, we studiously avoid using any features of

Github other than those which can easily be recorded in the email history. That way, if we switch from Github to
another host someday, we will not have to go to any effort to preserve our public history. While we do accept
Github pull requests[26], the editor carefully copies any information from accepted pull requests to the SRFI
mailing list so that everyone can see it.
There are some SRFI contributors and users who do not want to use Github at all, either because they use a

purely email-based workflow or for other reasons. They are first-class contributors, too, and we support them
by accepting new code, documents, and patches by email and by making the complete contents of all SRFI
repositories available available as a downloadable archive on the SRFI home page. (We would welcome the
creation of cloned repositories, either self-hosted or on other providers like Gitlab.)
4We’ll refer to the SRFI editor(s) as “we” henceforth.

, Vol. 1, No. 1, Article . Publication date: September 2018.

Growing Schemes • :5

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

0
1
/0

1
/1

9
9
9

0
1
/0

1
/2

0
0
0

0
1
/0

1
/2

0
0
1

0
1
/0

1
/2

0
0
2

0
1
/0

1
/2

0
0
3

0
1
/0

1
/2

0
0
4

0
1
/0

1
/2

0
0
5

0
1
/0

1
/2

0
0
6

0
1
/0

1
/2

0
0
7

0
1
/0

1
/2

0
0
8

0
1
/0

1
/2

0
0
9

0
1
/0

1
/2

0
1
0

0
1
/0

1
/2

0
1
1

0
1
/0

1
/2

0
1
2

0
1
/0

1
/2

0
1
3

0
1
/0

1
/2

0
1
4

0
1
/0

1
/2

0
1
5

0
1
/0

1
/2

0
1
6

0
1
/0

1
/2

0
1
7

0
1
/0

1
/2

0
1
8

Cumulative SRFIs

all

final

withdrawn

Fig. 2. SRFIs over time

Note that, until April 2015, SRFI version control was done using the CVS version control system[38]. All SRFI
work was done in a single repository, and that repository was not public. When the transition to Git was made,
the CVS history was preserved in Git, but separated into one repository per SRFI and one more for common
work, including administrative code and the contents of the home page and other parts of the web site. All of
those repositories are now public.

3 HISTORY OF SRFI
SRFI has been a long-lived institution[22], operating for twenty years so far under eight different editors[19], all
volunteers. Fifty-seven people have been authors of now 162 SRFIs (124 finalized (see table 3), 4 draft, and 34
withdrawn[18]). Many more people have contributed to SRFI discussions and implementations.

Figure 2 shows how the number of SRFIs has grown over time. For reference, note that R5RS was published in
1998, R6RS was published in 2007, R7RS-small was published in 2013, and that work on R7RS-large began in 2013.
SRFIs continued to be written in between the publication of R6RS and the start of R7RS-small, but more slowly,
perhaps because of the lull in formal standardization efforts.

3.1 Relation to RnRS standards
While SRFI has operated in parallel with the RnRS standards, acting as a supplement to them, not an alternative,
its history has been intertwined with theirs, too.
The editors of R6RS used the SRFI process as a way to organize public discussion of language changes

and extensions they were considering[13]. They adopted the process of publishing draft SRFIs, holding public
discussion on the SRFI mailing lists, and then withdrawing them once a decision had been made about what to

, Vol. 1, No. 1, Article . Publication date: September 2018.

:6 • Arthur A. Gleckler

include in the standard, regardless of the decision. This period accounts for many of the SRFIs that are now in the
withdrawn state. Despite the withdrawal of these SRFIs, many of the ideas that are in R6RS reached it through
the SRFI process. For example, SRFIs 11, 33, 34, 60, 74, 75, 76, 77, 83, and 93 were largely incorporated into R6RS,
and a subset of SRFI 1 was, too[6].
The editors of the R7RS-small working group didn’t explicitly make SRFIs a part of the standard-making

process. Nevertheless, several specific SRFIs, e.g. for records (SRFIs 9 and 99), were discussed, debated, and used
directly or as inspiration for features of R7RS-small. R7RS-small incorporates nine SRFIs. The working group
used SRFIs as far as was appropriate for an effort organized around standardizing the language as opposed to
adding libraries. The R7RS-small standard document specifically acknowledges the influence of SRFIs 0, 1, 4, 6, 9,
11, 13, 16, 30, 34, 39, 43, 45, 46, 62 and 87[7].

The R7RS-large discussion and voting process, which is still under way, is explicitly organized around SRFIs.
Many new SRFIs have been proposed as part of R7RS-large, and many more are planned as part of later dockets.

3.2 Web site
The SRFI primary web site, srfi.schemers.org, is ordinary in most respects, but it has a few noteworthy character-
istics:

• It’s entirely static in the sense that only static files are served to the users. There are no dynamic web
request handlers.

• Despite this, it supports searching and sorting as well as filtering by keywords and SRFI state (i.e. draft,
final, or withdrawn). All of this is done in Javascript so that it can be instantaneous. Searching for a SRFI is
much like incremental search in Emacs[15]. However, as searching, sorting, and filtering are done, the URL
is updated, so it’s possible to bookmark the results.

• Care has been taken to make all the common pages, including the SRFI landing pages, display well on
mobile web browsers. While the SRFI documents themselves haven’t been adjusted, CSS has been added
that makes them display well on mobile devices, too.

• SSL/TLS has been added to the entire site to prevent unauthorized tampering with the contents as it is
transmitted.

• The aforementioned mobile and TLS improvements have the additional advantage that they improve Google
search ranking.

3.3 Survey of implementations
We have surveyed the documentation of twenty-two Scheme implementations to determine which SRFIs are
implemented by each. See table 1 for the survey data. Note that some SRFIs are supported as part of the R6RS or
R7RS conformance, and are not listed in this table. (See section 3.1.)

Figure 3 shows the number of Scheme implementations in which each SRFI is implemented. This includes not
only final SRFIs, but also ones that have been withdrawn, e.g. as part of R7RS standardization.

Figure 4 is a visualization of which final SRFIs are supported in which implementations. The X axis represents
increasing final SRFI numbers. The Y axis represents all the Scheme implementations in the survey data.
Table 2 lists SRFIs in order of decreasing number of implementations. As one would expect, earlier SRFIs

typically have the most implementations. Some are even supported by almost all implementations. However,
more recent SRFIs are gradually getting more implementations.

Note that some of these Scheme implementations are no longer actively maintained, which is why they don’t
support more recent SRFIs.

, Vol. 1, No. 1, Article . Publication date: September 2018.

srfi.schemers.org

Growing Schemes • :7

3.4 Other history
There have been eight editors over the history of SRFI, often several at a time, but there is currently only one.
There is no formal process for the transition from one editor to the next. Each group of editors has chosen the
next based at least partly on who has volunteered.
The topics covered by SRFIs continue to be an eclectic mix of everything from data structures to operating

system interfaces. There is no clear pattern of change in the topics. However, many of the most recent SRFIs are
revisions of earlier ones, sometimes to make them more consistent with each other or with RnRS standards.

Over the past three years, we have made several changes to the SRFI process:
• We have experimented with allowing the SRFI draft period to extend past ninety days. This experiment has
had mixed success. Since then, sometimes due to factors beyond the authors’ control, some SRFIs have
taken more than a year to finalize. On the other hand, some of these long-running SRFIs have produced
excellent results. We intend to return to enforcing the original deadlines for new SRFIs.

• We now allow a finalized SRFI to be withdrawn with the approval of its author, but only if there is a new
SRFI to replace it.

• There is now a formal process for accepting and publishing errors in the document.
• Every SRFI has its own public Git version control repository.

Implemen-
tation

Count SRFIs Supported Sources

Bigloo 11 0, 1, 2, 4, 6, 8, 9, 14, 18, 22, 28 [40]
Chez 59 0, 1, 2, 4, 5, 6, 8, 9, 11, 13, 14, 16, 17, 19, 23, 25, 26, 27, 28, 29, 31, 34, 35, 37, 38,

39, 41, 42, 43, 45, 48, 51, 54, 60, 61, 64, 67, 69, 78, 98, 99, 115, 117, 125, 126, 127,
128, 129, 130, 131, 132, 133, 141, 143, 145, 151, 152, 156, 158

[25]

Chibi 50 0, 1, 2, 6, 8, 9, 11, 14, 16, 18, 23, 26, 27, 33, 38, 39, 41, 46, 55, 69, 95, 98, 99, 101,
111, 113, 115, 116, 117, 121, 124, 125, 127, 128, 129, 130, 132, 133, 134, 135, 139,
141, 142, 143, 144, 145, 147, 151, 154, 159

[41],
[42]

Chicken 68 0, 1, 2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 23, 25, 26, 27, 28, 29, 30,
31, 34, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 55, 57, 58, 60, 61, 62, 63, 64, 66,
69, 71, 72, 78, 87, 88, 89, 90, 95, 98, 99, 101, 102, 113, 116, 117, 121, 127, 128, 133

[10],
[9]

Foment 8 1, 60, 106, 111, 112, 124, 125, 128 [37],
[37]

Gambit 22 0, 2, 1, 4, 6, 8, 9, 13, 14, 16, 18, 19, 21, 22, 23, 27, 28, 30, 39, 40, 88, 95 [11]
Gauche 75 0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 16, 17, 18, 19, 22, 23, 25, 26, 27, 28, 29, 30, 31,

34, 35, 36, 37, 38, 39, 40, 42, 43, 45, 46, 55, 60, 61, 62, 64, 66, 69, 74, 78, 87, 95,
96, 98, 99, 106, 111, 112, 113, 114, 117, 118, 121, 125, 127, 128, 129, 131, 132, 133,
134, 141, 143, 145, 146, 149, 151, 152, 158

[35]

Guile 44 0, 1, 2, 4, 6, 8, 9, 10, 11, 13, 14, 16, 17, 18, 19, 23, 26, 27, 28, 30, 31, 34, 35, 37, 38,
39, 41, 42, 43, 45, 46, 55, 60, 61, 62, 64, 67, 69, 71, 87, 88, 98, 105, 111

[14]

Ikarus 22 0, 1, 2, 6, 8, 9, 11, 13, 14, 16, 19, 23, 26, 27, 31, 37, 39, 41, 42, 43, 67, 78 [16]
Kawa 38 0, 1, 2, 4, 6, 8, 9, 10, 11, 13, 14, 16, 17, 23, 25, 26, 28, 30, 35, 37, 38, 39, 41, 45, 60,

62, 64, 69, 87, 88, 95, 97, 98, 101, 107, 108, 109, 118
[3]

, Vol. 1, No. 1, Article . Publication date: September 2018.

:8 • Arthur A. Gleckler

Larceny 85 0, 1, 2, 5, 6, 8, 9, 11, 13, 14, 16, 17, 19, 23, 25, 26, 27, 28, 29, 30, 31, 34, 37, 38, 39,
41, 42, 43, 45, 48, 51, 54, 55, 59, 60, 61, 62, 63, 64, 66, 67, 69, 71, 74, 78, 86, 87,
95, 98, 99, 101, 111, 112, 113, 114, 115, 116, 117, 121, 122, 123, 124, 125, 126, 127,
128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 141, 142, 143, 144, 145, 146,
147, 151, 152

[4]

MIT 15 0, 1, 2, 6, 8, 9, 10, 23, 27, 30, 39, 60, 62, 69, 131 [23]
Mosh 27 0, 1, 2, 6, 8, 9, 11, 13, 14, 16, 19, 23, 26, 27, 31, 37, 38, 39, 41, 42, 43, 48, 61, 67, 78,

97, 98
[31]

Racket 47 1, 2, 4, 6, 7, 8, 9, 11, 13, 14, 16, 17, 19, 23, 25, 26, 27, 28, 30, 31, 34, 35, 38, 39, 40,
41, 42, 43, 45, 48, 54, 57, 59, 60, 61, 62, 63, 64, 66, 67, 69, 71, 74, 78, 86, 87, 98

[50]

Sagittarius 71 0, 1, 2, 4, 6, 8, 13, 14, 17, 18, 19, 22, 23, 25, 26, 27, 29, 31, 37, 38, 39, 41, 42, 43, 45,
49, 57, 60, 61, 64, 69, 78, 86, 87, 98, 99, 100, 101, 105, 106, 110, 111, 112, 113, 114,
115, 116, 117, 120, 121, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134,
135, 139, 141, 142, 143, 144, 145, 151, 158

[27]

Scheme48 38 1, 2, 4, 5, 6, 7, 8, 9, 11, 13, 14, 16, 17, 19, 22, 23, 25, 26, 27, 28, 31, 34, 37, 39, 40,
42, 43, 45, 60, 61, 62, 63, 66, 67, 71, 74, 78, 95

[39],
[28]

SCM 11 0, 1, 2, 8, 9, 47, 58, 59, 60, 63, 70 [29]
SCSH 22 1, 2, 5, 6, 7, 8, 9, 11, 13, 14, 16, 17, 19, 23, 25, 26, 27, 28, 30, 31, 37, 42 [44]
Sig 17 0, 1, 2, 6, 8, 9, 22, 23, 28, 34, 38, 43, 48, 55, 60, 69, 95 [30]
SLIB 11 0, 1, 2, 8, 9, 47, 59, 60, 61, 63, 96 [34]
STklos 42 0, 1, 2, 4, 6, 7, 8, 9, 10, 11, 13, 14, 16, 17, 18, 22, 23, 26, 27, 28, 30, 31, 34, 35, 36,

38, 39, 45, 48, 55, 59, 60, 62, 66, 69, 70, 74, 88, 89, 96, 98, 100
[32]

Ypsilon 16 1, 6, 8, 9, 13, 14, 19, 26, 27, 28, 38, 39, 41, 42, 48, 98 [33]
Table 1. SRFI support by Scheme implementations

SRFI Title Count
1 List Library 22
8 receive: Binding to multiple values 21
2 AND-LET*: an AND with local bindings, a guarded LET* special form 20
9 Defining Record Types 20
6 Basic String Ports 19
0 Feature-based conditional expansion construct 17
14 Character-set Library 17
23 Error reporting mechanism 17
27 Sources of Random Bits 16
39 Parameter objects 16
13 String Libraries 15
26 Notation for Specializing Parameters without Currying 15
60 Integers as Bits 15
16 Syntax for procedures of variable arity 14
28 Basic Format Strings 14
11 Syntax for receiving multiple values 13
19 Time Data Types and Procedures 13
38 External Representation for Data With Shared Structure 13

, Vol. 1, No. 1, Article . Publication date: September 2018.

Growing Schemes • :9

31 A special form ‘rec’ for recursive evaluation 12
42 Eager Comprehensions 12
69 Basic hash tables 12
98 An interface to access environment variables 12
4 Homogeneous numeric vector datatypes 11
17 Generalized set! 11
37 args-fold: a program argument processor 11
41 Streams 11
43 Vector library 11
30 Nested Multi-line Comments 10
45 Primitives for Expressing Iterative Lazy Algorithms 10
61 A more general cond clause 10
25 Multi-dimensional Array Primitives 9
34 Exception Handling for Programs 9
62 S-expression comments 9
78 Lightweight testing 9
18 Multithreading support 8
48 Intermediate Format Strings 8
64 A Scheme API for test suites 8
95 Sorting and Merging 8
22 Running Scheme Scripts on Unix 7
55 require-extension 7
67 Compare Procedures 7
87 => in case clauses 7
128 Comparators (reduced) 7
7 Feature-based program configuration language 6
10 #, external form 6
35 Conditions 6
63 Homogeneous and Heterogeneous Arrays 6
66 Octet Vectors 6
99 ERR5RS Records 6
111 Boxes 6
117 Mutable Queues 6
125 Intermediate hash tables 6
127 Lazy Sequences 6
133 Vector Library (R7RS-compatible) 6
5 A compatible let form with signatures and rest arguments 5
29 Localization 5
40 A Library of Streams 5
59 Vicinity 5
71 Extended LET-syntax for multiple values 5
74 Octet-Addressed Binary Blocks 5
88 Keyword objects 5
101 Purely Functional Random-Access Pairs and Lists 5
113 Sets and bags 5
121 Generators 5

, Vol. 1, No. 1, Article . Publication date: September 2018.

:10 • Arthur A. Gleckler

129 Titlecase procedures 5
131 ERR5RS Record Syntax (reduced) 5
132 Sort Libraries 5
141 Integer division 5
143 Fixnums 5
145 Assumptions 5
151 Bitwise Operations 5
46 Basic Syntax-rules Extensions 4
112 Environment Inquiry 4
115 Scheme Regular Expressions 4
116 Immutable List Library 4
124 Ephemerons 4
130 Cursor-based string library 4
134 Immutable Deques 4
47 Array 3
54 Formatting 3
57 Records 3
86 MU and NU simulating VALUES & CALL-WITH-VALUES, and their related

LET-syntax
3

96 SLIB Prerequisites 3
106 Basic socket interface 3
114 Comparators 3
126 R6RS-based hashtables 3
135 Immutable Texts 3
142 Bitwise Operations 3
144 Flonums 3
152 String Library (reduced) 3
158 Generators and Accumulators 3
36 I/O Conditions 2
49 Indentation-sensitive syntax 2
51 Handling rest list 2
58 Array Notation 2
70 Numbers 2
89 Optional positional and named parameters 2
97 SRFI Libraries 2
100 define-lambda-object 2
105 Curly-infix-expressions 2
118 Simple adjustable-size strings 2
123 Generic accessor and modifier operators 2
139 Syntax parameters 2
146 Mappings 2
147 Custom macro transformers 2
12 Exception Handling 1
15 Syntax for dynamic scoping 1
21 Real-time multithreading support 1
33 Integer Bitwise-operation Library 1

, Vol. 1, No. 1, Article . Publication date: September 2018.

Growing Schemes • :11

72 Hygienic macros 1
90 Extensible hash table constructor 1
102 Procedure Arity Inspection 1
107 XML reader syntax 1
108 Named quasi-literal constructors 1
109 Extended string quasi-literals 1
110 Sweet-expressions (t-expressions) 1
120 Timer APIs 1
122 Nonempty Intervals and Generalized Arrays 1
136 Extensible record types 1
137 Minimal Unique Types 1
138 Compiling Scheme programs to executables 1
149 Basic Syntax-rules Template Extensions 1
154 First-class dynamic extents 1
156 Syntactic combiners for binary predicates 1
159 Combinator Formatting 1

Table 2. SRFI rank by number of Scheme implementations
SRFIs in order of decreasing number of implementations

4 RELATED WORK
For the relationship between SRFIs and the RnRS standards, see section 3.1.

4.1 CDR
The Common Lisp programming language has a web site that is somewhat similar to SRFI in that it is a place where
proposed improvements to the language, etc. are collected: the CDR, or Common Lisp Document Repository[1].
CDR aims to be a way to collect “specifications of libraries, language extensions, example implementations, test
suites, articles, etc.” In that sense, it’s similar to SRFI. However, it’s different in that it doesn’t attempt to organize
the discussion or review of the documents it collects: “The Common Lisp Document Repository intentionally
does not define a process for coming up with specifications or any other means to guarantee some level of quality
of the submitted documents. Instead, we aim for a community-driven, decentralized approach to come up, discuss
and finalize specifications. In this sense, we only provide the services of librarians.” Currently, there are fifteen
documents in the CDR, and it was last updated in 2013.

4.2 Package managers
Package managers are an increasingly common feature of programming language implementations. They typically
allow automatic downloading and installation of new code, and sometimes dependencies as well.

• Quicklisp[2] is a popular package manager for Common Lisp. As of this writing, it supports eleven different
Common Lisp implementations. It can download and install over 1,500 packages and their dependencies.

• Snow[43] is a package manager for any R7RS-compliant Scheme. As of this writing, it has two client
implementations that together support seven different Scheme implementations. It can download and
install 134 different packages. Note that 22 of those are SRFI implementations.

• Eggs Unlimited[47] is a package manager only for Chicken Scheme. As of this writing, it can download
and install 777 different packages. Note that 66 of those are SRFI implementations.

, Vol. 1, No. 1, Article . Publication date: September 2018.

:12 • Arthur A. Gleckler

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120 140 160

SRFI implementation counts

implementations

Fig. 3. SRFI implementation counts
The number of Scheme implementations in which each SRFI is implemented

Fig. 4. SRFI implementation matrix
A visualization of which final SRFIs are supported in which implementations. The X axis represents increasing final SRFI
numbers. The Y axis represents all the Scheme implementations in the survey data.

• Racket Packages[49] is the package manager only for Racket[48], a language implementation that “started
life as a Scheme implementation.” As of this writing, it can download and install 1,005 different packages
and their dependencies.

There is overlap between package managers and the SRFI process, but they are quite different. Package
managers go beyond the SRFIs in that they include software for downloading and installing code rather than
being the collections themselves. However, the SRFI process goes beyond package managers because it is a
process for producing new extensions rather than just a way of downloading and installing them. Furthermore,
SRFIs are often used to propose extensions to the language that cannot be made with portable code, but which
require deep changes to the Scheme implementation itself. In such cases, package managers are not enough.

, Vol. 1, No. 1, Article . Publication date: September 2018.

Growing Schemes • :13

It is worth noting that SRFIs 0 and 7 were originally intended to specify a package manager that would be
used for defining and installing Scheme software packages, but that this plan didn’t come to fruition[46].

5 FUTURE OF SRFI
We hope that the SRFI process will continue for even more decades, producing more SRFIs that are taken up and
supported by more Scheme implementations, both directly and through package managers like Eggs Unlimited,
Racket Packages, and Snow. In support of those goals, we’d like to make more improvements, including:

• Improve the formatting of SRFI documents to make them more pleasant to read on desktop displays, mobile
displays, and paper.

• Add semantic markup to SRFI documents so that indexes of definitions, for example, can be made automat-
ically.

• Support more Git hosts, including perhaps GitLab and self-hosted Git repositories.
• In collaboration with contributors, revise the policy on the length of discussion periods. Technically, the
process requires that it take sixty to ninety days, but we haven’t enforced that for a while. Still, some SRFIs
have taken over a year to finish, and that’s too long.

Help from fellow Scheme users is and would be greatly appreciated.

6 CONCLUSIONS
By many metrics, SRFI has been a successful process, e.g. by longevity (twenty years), number of proposals
(162[18]), number of Scheme implementations supporting SRFIs (at least 22, according to table 1), number of
authors (57[18]), and number of participants (unknown, but in the hundreds, as there are currently 716 unique
email addresses subscribed to SRFI mailing lists.)

Furthermore, SRFIs have been incorporated into all RnRS standards since SRFI started: R6RS, R7RS-small, and
R7RS-large.
SRFI has been less successful by some metrics, e.g. number of SRFIs supported by each implementation. (See

table 1.) Many implementations support only a few of the 124 finalized SRFIs. Note, however, that some SRFIs
are revisions of or replacements for earlier SRFIs, or are directly incorporated into the standards that Scheme
implementations support, so implementing the full 124 is not to be expected. Finally, some SRFIs may just be
bad ideas. A committed author can get a pet idea through the SRFI process even if few users, much less Scheme
implementers, would be interested in it. This is both a good thing and a bad thing.
One lesson to be learned from the SRFI process is that a process less formal than the RnRS processes, one

with smaller scope per work product (i.e. a SRFI rather than an RnRS report), and one that has less demanding
requirements for approval, but that still facilitates public discussion (as opposed to the Common Lisp Docu-
ment Repository[1], which leaves that entirely to the author), can lead to increased frequency and quantity of
contribution, and to work that Scheme implementers and standards committee members alike will adopt.
Another lesson is that less formal processes can help facilitate more formal standardization efforts, and can

help bridge the often long periods between publication of formal standards. A language like Scheme, with so
many implementations, benefits from a common way to propose improvements — one that does not require
consensus. New ideas can be tried with little cost, then folded into formal standards once their benefits, costs,
and ramifications are well understood through experience.
Requests really can grow a language.

A WHAT SRFIS EXIST?
Here are all the finalized SRFIs as of this writing:

, Vol. 1, No. 1, Article . Publication date: September 2018.

:14 • Arthur A. Gleckler

No. Title
0 Feature-based conditional expansion construct
1 List Library
2 AND-LET*: an AND with local bindings, a guarded LET* special form
4 Homogeneous numeric vector datatypes
5 A compatible let form with signatures and rest arguments
6 Basic String Ports
7 Feature-based program configuration language
8 receive: Binding to multiple values
9 Defining Record Types
10 #, external form
11 Syntax for receiving multiple values
13 String Libraries
14 Character-set Library
16 Syntax for procedures of variable arity
17 Generalized set!
18 Multithreading support
19 Time Data Types and Procedures
21 Real-time multithreading support
22 Running Scheme Scripts on Unix
23 Error reporting mechanism
25 Multi-dimensional Array Primitives
26 Notation for Specializing Parameters without Currying
27 Sources of Random Bits
28 Basic Format Strings
29 Localization
30 Nested Multi-line Comments
31 A special form ‘rec’ for recursive evaluation
34 Exception Handling for Programs
35 Conditions
36 I/O Conditions
37 args-fold: a program argument processor
38 External Representation for Data With Shared Structure
39 Parameter objects
41 Streams
42 Eager Comprehensions
43 Vector library
44 Collections
45 Primitives for Expressing Iterative Lazy Algorithms
46 Basic Syntax-rules Extensions
47 Array
48 Intermediate Format Strings
49 Indentation-sensitive syntax
51 Handling rest list
54 Formatting

, Vol. 1, No. 1, Article . Publication date: September 2018.

Growing Schemes • :15

55 require-extension
57 Records
58 Array Notation
59 Vicinity
60 Integers as Bits
61 A more general cond clause
62 S-expression comments
63 Homogeneous and Heterogeneous Arrays
64 A Scheme API for test suites
66 Octet Vectors
67 Compare Procedures
69 Basic hash tables
70 Numbers
71 Extended LET-syntax for multiple values
72 Hygienic macros
74 Octet-Addressed Binary Blocks
78 Lightweight testing
86 MU and NU simulating VALUES & CALL-WITH-VALUES, and their related LET-syntax
87 => in case clauses
88 Keyword objects
89 Optional positional and named parameters
90 Extensible hash table constructor
94 Type-Restricted Numerical Functions
95 Sorting and Merging
96 SLIB Prerequisites
97 SRFI Libraries
98 An interface to access environment variables
99 ERR5RS Records
100 define-lambda-object
101 Purely Functional Random-Access Pairs and Lists
105 Curly-infix-expressions
106 Basic socket interface
107 XML reader syntax
108 Named quasi-literal constructors
109 Extended string quasi-literals
110 Sweet-expressions (t-expressions)
111 Boxes
112 Environment Inquiry
113 Sets and bags
115 Scheme Regular Expressions
116 Immutable List Library
117 Mutable Queues
118 Simple adjustable-size strings
119 wisp: simpler indentation-sensitive scheme
120 Timer APIs
121 Generators

, Vol. 1, No. 1, Article . Publication date: September 2018.

:16 • Arthur A. Gleckler

122 Nonempty Intervals and Generalized Arrays
123 Generic accessor and modifier operators
124 Ephemerons
125 Intermediate hash tables
126 R6RS-based hashtables
127 Lazy Sequences
128 Comparators (reduced)
129 Titlecase procedures
130 Cursor-based string library
131 ERR5RS Record Syntax (reduced)
132 Sort Libraries
133 Vector Library (R7RS-compatible)
134 Immutable Deques
135 Immutable Texts
136 Extensible record types
137 Minimal Unique Types
138 Compiling Scheme programs to executables
139 Syntax parameters
140 Immutable Strings
141 Integer division
143 Fixnums
144 Flonums
145 Assumptions
146 Mappings
147 Custom macro transformers
148 Eager syntax-rules
149 Basic Syntax-rules Template Extensions
150 Hygienic ERR5RS Record Syntax (reduced)
151 Bitwise Operations
152 String Library (reduced)
156 Syntactic combiners for binary predicates
157 Continuation marks
158 Generators and Accumulators
159 Combinator Formatting

Table 3. Finalized SRFIs as of this writing

ACKNOWLEDGMENTS
The author hereby thanks the organizers of all Scheme Workshops since the first, as well as everyone who
has attended; all the previous SRFI editors (Donovan Kolbly, Shriram Krishnamurthi, Dave Mason, David Rush,
Francisco Solsona, Mike Sperber, and David Van Horn); all SRFI authors; everyone who has contributed to
SRFI discussions and implementations; everyone who has participated in the IEEE Scheme and RnRS standards
processes, especially the editors; Guy L. Steele and Prof. Gerald J. Sussman, the inventors of the language; and
especially the author’s beloved wife and daughter.

, Vol. 1, No. 1, Article . Publication date: September 2018.

Growing Schemes • :17

REFERENCES
[1] Marc Battyani, Pascal Costanza, Arthur Lemmens, and Edi Weitz. 2013. CDR - Common Lisp Document Repository. Retrieved 2018-7-5

from https://common-lisp.net/project/cdr//
[2] Zach Beane. 2018. Quicklisp beta. Retrieved 2018-7-5 from https://www.quicklisp.org/beta/
[3] Per Bothner. 2017. Kawa page. Retrieved 2018-7-3 from https://www.gnu.org/software/kawa/Implemented-SRFIs.html
[4] Will Clinger. 2017. Larceny SRFI page. Retrieved 2018-8-23 from https://github.com/larcenists/larceny/tree/master/lib/SRFI/srfi
[5] R6RS Editors. 2007. R6RS. Retrieved 2018-8-26 from http://www.r6rs.org/
[6] R6RS Editors. 2007. R6RS. Retrieved 2018-8-26 from http://www.r6rs.org/final/r6rs-rationale.pdf
[7] R7RS Editors. 2007. R7RS. Retrieved 2018-8-26 from https://bitbucket.org/cowan/r7rs/raw/4c27517de187142ad2cf4bcd8cb9199ae1e48c09/

rnrs/r7rs.pdf
[8] R7RS Editors. 2018. R7RS home page. Retrieved 2018-7-5 from https://bitbucket.org/cowan/r7rs-wg1-infra/src/default/R7RSHomePage.

md?fileviewer=file-view-default
[9] Felix Winkelmann et al. 2018. Chicken Scheme page. Retrieved 2018-7-3 from http://wiki.call-cc.org/SRFI-conformance
[10] Felix Winkelmann et al. 2018. Eggs Unlimited (release branch 4). Retrieved 2018-8-23 from http://wiki.call-cc.org/chicken-projects/

egg-index-4.html
[11] Marc Feeley et al. 2010. Gambit page. Retrieved 2018-7-3 from http://gambitscheme.org/wiki/index.php/SRFI:s
[12] Scott Chacon et al. 2018. Git home page. Retrieved 2018-7-5 from https://git-scm.com/
[13] Marc Feeley. 2005. [R6RS] SRFIs for R6RS. Retrieved 2018-7-5 from http://www.r6rs.org/r6rs-editors/2005-May/000557.html
[14] Free Software Foundation. 2017. Guile page. Retrieved 2018-7-6 from https://www.gnu.org/software/guile/manual/html_node/

SRFI-Support.html
[15] Free Software Foundation. 2018. The Emacs Editor: 15.1 Incremental Search. Retrieved 2018-7-5 from https://www.gnu.org/software/

emacs/manual/html_node/emacs/Incremental-Search.html
[16] Abdulaziz Ghuloum. 2008. Ikarus page. Retrieved 2018-7-3 from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.130.9554&

rep=rep1&type=pdf
[17] Arthur A. Gleckler. 2018. Github home page for Scheme Requests for Implementation. Retrieved 2018-7-5 from http://github.com/

scheme-requests-for-implementation/
[18] Arthur A. Gleckler. 2018. SRFI Data. Retrieved 2018-7-5 from https://github.com/scheme-requests-for-implementation/srfi-common/

blob/master/admin/srfi-data.scm
[19] Arthur A. Gleckler, David Van Horn, and Mike Sperber. 2017. SRFI History. Retrieved 2018-7-5 from https://srfi.schemers.org/srfi-editors.

html
[20] Arthur A. Gleckler, David Van Horn, and Mike Sperber. 2018. Scheme Requests for Implementation document template. Retrieved

2018-7-5 from https://srfi.schemers.org/srfi-template.html
[21] Arthur A. Gleckler, David Van Horn, and Mike Sperber. 2018. Scheme Requests for Implementation home page. Retrieved 2018-7-2

from https://srfi.schemers.org/
[22] Arthur A. Gleckler, David Van Horn, and Mike Sperber. 2018. SRFI Editors. Retrieved 2018-7-5 from https://srfi.schemers.org/srfi-history.

html
[23] Chris Hanson. 2018. MIT Scheme home page. Retrieved 2018-7-3 from https://www.gnu.org/software/mit-scheme/
[24] David Van Horn, Donovan Kolbly, Mike Sperber, and Arthur A. Gleckler. 2018. Scheme Requests for Implementation Process. Retrieved

2018-7-5 from https://srfi.schemers.org/srfi-process.html
[25] Aaron W. Hsu. 2018. Chez page. Retrieved 2018-7-3 from https://github.com/arcfide/chez-srfi
[26] Github Inc. 2018. Github Help: About pull requests. Retrieved 2018-7-5 from https://help.github.com/articles/about-pull-requests/
[27] Takashi Kato. 2018. Sagittarius Scheme Users’ Reference, Chapter 9, Supporting SRFIs. Retrieved 2018-8-23 from http://ktakashi.github.

io/sagittarius-online-ref/section9.html
[28] Shiro Kawai. 2006. Scheme48 entry on practical-scheme.net. Retrieved 2018-7-13 from https://practical-scheme.net/wiliki/schemexref.

cgi?Scheme48
[29] Shiro Kawai. 2007. SCM entry on practical-scheme.net. Retrieved 2018-7-13 from https://practical-scheme.net/wiliki/schemexref.cgi?

SCM
[30] Shiro Kawai. 2007. SigScheme entry on practical-scheme.net. Retrieved 2018-7-13 from https://practical-scheme.net/wiliki/schemexref.

cgi?SigScheme
[31] Shiro Kawai. 2012. Mosh entry on practical-scheme.net. Retrieved 2018-8-23 from https://practical-scheme.net/wiliki/schemexref.cgi?

Mosh
[32] Shiro Kawai. 2012. STklos entry on practical-scheme.net. Retrieved 2018-7-13 from https://practical-scheme.net/wiliki/schemexref.cgi?

STklos

, Vol. 1, No. 1, Article . Publication date: September 2018.

https://common-lisp.net/project/cdr//
https://www.quicklisp.org/beta/
https://www.gnu.org/software/kawa/Implemented-SRFIs.html
https://github.com/larcenists/larceny/tree/master/lib/SRFI/srfi
http://www.r6rs.org/
http://www.r6rs.org/final/r6rs-rationale.pdf
https://bitbucket.org/cowan/r7rs/raw/4c27517de187142ad2cf4bcd8cb9199ae1e48c09/rnrs/r7rs.pdf
https://bitbucket.org/cowan/r7rs/raw/4c27517de187142ad2cf4bcd8cb9199ae1e48c09/rnrs/r7rs.pdf
https://bitbucket.org/cowan/r7rs-wg1-infra/src/default/R7RSHomePage.md?fileviewer=file-view-default
https://bitbucket.org/cowan/r7rs-wg1-infra/src/default/R7RSHomePage.md?fileviewer=file-view-default
http://wiki.call-cc.org/SRFI-conformance
http://wiki.call-cc.org/chicken-projects/egg-index-4.html
http://wiki.call-cc.org/chicken-projects/egg-index-4.html
http://gambitscheme.org/wiki/index.php/SRFI:s
https://git-scm.com/
http://www.r6rs.org/r6rs-editors/2005-May/000557.html
https://www.gnu.org/software/guile/manual/html_node/SRFI-Support.html
https://www.gnu.org/software/guile/manual/html_node/SRFI-Support.html
https://www.gnu.org/software/emacs/manual/html_node/emacs/Incremental-Search.html
https://www.gnu.org/software/emacs/manual/html_node/emacs/Incremental-Search.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.130.9554&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.130.9554&rep=rep1&type=pdf
http://github.com/scheme-requests-for-implementation/
http://github.com/scheme-requests-for-implementation/
https://github.com/scheme-requests-for-implementation/srfi-common/blob/master/admin/srfi-data.scm
https://github.com/scheme-requests-for-implementation/srfi-common/blob/master/admin/srfi-data.scm
https://srfi.schemers.org/srfi-editors.html
https://srfi.schemers.org/srfi-editors.html
https://srfi.schemers.org/srfi-template.html
https://srfi.schemers.org/
https://srfi.schemers.org/srfi-history.html
https://srfi.schemers.org/srfi-history.html
https://www.gnu.org/software/mit-scheme/
https://srfi.schemers.org/srfi-process.html
https://github.com/arcfide/chez-srfi
https://help.github.com/articles/about-pull-requests/
http://ktakashi.github.io/sagittarius-online-ref/section9.html
http://ktakashi.github.io/sagittarius-online-ref/section9.html
https://practical-scheme.net/wiliki/schemexref.cgi?Scheme48
https://practical-scheme.net/wiliki/schemexref.cgi?Scheme48
https://practical-scheme.net/wiliki/schemexref.cgi?SCM
https://practical-scheme.net/wiliki/schemexref.cgi?SCM
https://practical-scheme.net/wiliki/schemexref.cgi?SigScheme
https://practical-scheme.net/wiliki/schemexref.cgi?SigScheme
https://practical-scheme.net/wiliki/schemexref.cgi?Mosh
https://practical-scheme.net/wiliki/schemexref.cgi?Mosh
https://practical-scheme.net/wiliki/schemexref.cgi?STklos
https://practical-scheme.net/wiliki/schemexref.cgi?STklos

:18 • Arthur A. Gleckler

[33] Shiro Kawai. 2012. Ypsilon entry on practical-scheme.net. Retrieved 2018-7-13 from https://practical-scheme.net/wiliki/schemexref.
cgi?Ypsilon

[34] Shiro Kawai. 2014. SLIB entry on practical-scheme.net. Retrieved 2018-7-13 from https://practical-scheme.net/wiliki/schemexref.cgi?SLIB
[35] Shiro Kawai. 2018. Gauche page. Retrieved 2018-8-23 from http://practical-scheme.net/gauche/man/gauche-refe/Standard-conformance.

html#Standard-conformance
[36] Richard Kelsey. 1998. Preliminary Call for Participation, Scheme Strawman Workshop. Retrieved 2018-7-2 from https://web.archive.

org/web/19990428131650/http://www.neci.nj.nec.com/homepages/kelsey/workshop.html
[37] Mike Montague. 2017. Foment. Retrieved 2018-7-5 from https://github.com/leftmike/foment/wiki/Foment
[38] Derek Robert Price and Ximbiot. 2015. CVS - Concurrent Versions System. Retrieved 2018-7-5 from https://www.nongnu.org/cvs/
[39] et al. Richard Kelsey, Jonathan Rees. 2001. Scheme48 manual (1.9.2). Retrieved 2018-8-23 from http://s48.org/
[40] Manuel Serrano. 2017. Bigloo page. Retrieved 2018-7-3 from https://www-sop.inria.fr/indes/fp/Bigloo/bigloo-1.html
[41] Alex Shinn. 2018. personal communication.
[42] Alex Shinn. 2018. Chibi Scheme page. Retrieved 2018-7-3 from https://github.com/ashinn/chibi-scheme/tree/master/lib/srfi
[43] Alex Shinn. 2018. Snow! Retrieved 2018-7-5 from http://snow-fort.org/
[44] Olin Shivers, Brian D. Carlstrom, Martin Gasbichler, and Mike Sperber. 2006. SCSH page. Retrieved 2018-7-3 from https://scsh.net/

docu/docu.html
[45] Michael Sperber. 2018. personal communication.
[46] Michael Sperber. 2018. personal communication.
[47] Chicken team. 2018. Eggs Unlimited. Retrieved 2018-7-5 from http://wiki.call-cc.org/chicken-projects/egg-index-4.html
[48] Racket team. 2018. Racket. Retrieved 2018-7-5 from https://racket-lang.org/
[49] Racket team. 2018. Racket Packages. Retrieved 2018-7-5 from https://pkgs.racket-lang.org/
[50] Racket team. 2018. Racket page. Retrieved 2018-8-23 from https://docs.racket-lang.org/srfi/

Received July 2018; accepted August 2018

, Vol. 1, No. 1, Article . Publication date: September 2018.

https://practical-scheme.net/wiliki/schemexref.cgi?Ypsilon
https://practical-scheme.net/wiliki/schemexref.cgi?Ypsilon
https://practical-scheme.net/wiliki/schemexref.cgi?SLIB
http://practical-scheme.net/gauche/man/gauche-refe/Standard-conformance.html#Standard-conformance
http://practical-scheme.net/gauche/man/gauche-refe/Standard-conformance.html#Standard-conformance
https://web.archive.org/web/19990428131650/http://www.neci.nj.nec.com/homepages/kelsey/workshop.html
https://web.archive.org/web/19990428131650/http://www.neci.nj.nec.com/homepages/kelsey/workshop.html
https://github.com/leftmike/foment/wiki/Foment
https://www.nongnu.org/cvs/
http://s48.org/
https://www-sop.inria.fr/indes/fp/Bigloo/bigloo-1.html
https://github.com/ashinn/chibi-scheme/tree/master/lib/srfi
http://snow-fort.org/
https://scsh.net/docu/docu.html
https://scsh.net/docu/docu.html
http://wiki.call-cc.org/chicken-projects/egg-index-4.html
https://racket-lang.org/
https://pkgs.racket-lang.org/
https://docs.racket-lang.org/srfi/

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Making use of SRFIs

	2 How does the SRFI process work?
	2.1 Requests
	2.2 Email
	2.3 States
	2.4 Version control

	3 History of SRFI
	3.1 Relation to RnRS standards
	3.2 Web site
	3.3 Survey of implementations
	3.4 Other history

	4 Related Work
	4.1 CDR
	4.2 Package managers

	5 Future of SRFI
	6 Conclusions
	A What SRFIs exist?
	Acknowledgments
	References

