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Abstract

Wasm-PBChunk: Incrementally Developing a Racket-to-Wasm Compiler Using
Partial Bytecode Compilation

Adam Perlin

Racket is a modern, general-purpose programming language with a language-oriented
focus. To date, Racket has found notable uses in research and education, among other
applications. To expand the reach of the language, there has been a desire to develop
an efficient platform for running Racket in a web-based environment. WebAssembly
(Wasm) is a binary executable format for a stack-based virtual machine designed to
provide a fast, efficient, and secure execution environment for code on the web. Wasm
is primarily intended to be a compiler target for higher-level languages. Providing
Wasm support for the Racket project may be a promising way to bring Racket to the

browser.

To this end, we present an incremental approach to the development of a Racket-
to-Wasm compiler. We make use of an existing backend for Racket that targets a
portable bytecode known as PB, along with the associated PB interpreter. We per-
form an ahead-of-time static translation of sections of PB into native Wasm, linking
the chunks back to the interpreter before execution. By replacing portions of PB
with native Wasm, we can eliminate some portion of interpretation overhead and
move closer to native Wasm support for Chez Scheme (Racket’s Backend). Due to
the use of an existing backend and interpreter, our approach already supports nearly
all features of the Racket language — including delimited continuations, tail-calling
behavior, and garbage collection — and excluding threading and FFI support for the

time being.
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We perform benchmarks against a baseline to validate our approach, to promising

results.
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Chapter 1

INTRODUCTION

Since the first browsers were developed, the problem of how to run interactive content
served over the web has been ever-present. Fundamentally, web pages are interactive
programs served over the internet, and browsers have continually grown in complex-
ity in response to increasing performance demands and security concerns posed by

interactive web applications.

Interactive web applications include client side code of some form, and traditionally,
client side code on the web has been written in JavaScript. Over the years, numer-
ous other alternative platforms for client side code on the web have been developed,
including Java Applets [36], Adobe Flash [2], and Native Client (NaCL) [53]. These
client-side platforms all suffered from numerous flaws stemming from security vul-
nerabilities, lack of portability, efficiency concerns, and corporate priorities hindering

standardization.

Fundamentally, WebAssembly (Wasm) [48] has succeeded where previous client-side
web approaches have failed [29]. Wasm is the binary executable format for a stack-
based virtual machine that can be implemented in a browser environment. It is fully
formally specified [23], and has been explicitly designed with speed, security, and ease
of verification in mind [23]. It is not meant to replace JavaScript; rather, it is meant
to serve as a compiler target for other higher level languages to run on the web in
conjunction with JavaScript. It is supported in all major browsers, including Chrome,
Firefox, Safari, and Microsoft Edge [48]. Given the breadth of Wasm support, its

standardization, and the growing momentum behind it, numerous high-level language



implementations are moving to target Wasm. For example, Emscripten [54] is a
compiler for LLVM-based languages that targets WebAssembly, allowing languages
such as C, C++, and Rust to run on the web. Targeting Wasm does not come without

its challenges however, as the development of Emscripten has indicated [54].

1.1 Motivation

Functional languages bring their own challenges to compilation, and these challenges
are still relevant when targeting WebAssembly. Thus, research focused on compiling
functional languages into Wasm is ongoing. Racket is one such functional language.
Racket is based on Scheme, and has found uses in research [42], [19] and education [15].
Racket uses Chez Scheme [12], an existing native Scheme compiler, as its backend.
There are numerous features of Scheme-based languages that complicate compilation
— in particular, guaranteed tail-call optimization (known in Scheme as “proper tail
calls”), first-class continuation operations, and dynamic typing, as well as the presence

of necessary runtime components such as a garbage collector.

Existing efforts to compile Racket and Scheme to WebAssembly include Rasm [32], a
proof of concept Wasm compiler for expanded Racket, and Hoot [26], an experimental
Wasm compiler for Scheme. Rasm unfortunately lacks runtime support, and Hoot
has taken a highly involved approach that has led to the development of a complex
separate compilation pipeline. As of today, there is no Wasm implementation of
Racket that is compatible with the existing code base and which provides sufficient

feature breadth to run most programs.



1.2 Key Contributions

We describe an approach we have implemented for running Racket on Wasm that
allows for near complete feature support — including delimited continuations, guar-
anteed tail call optimization, and garbage collection — and uses a much less involved
compilation strategy than existing efforts. Our key contribution is to work at the level
of a bytecode called PB that already supports all features of Scheme, and by exten-
sion, Racket. We then utilize Emscripten to compile the interpreter for PB (which is
written in C), along with the Chez Scheme runtime (also written in C) to Wasm. This
yields a version of Racket that can run in a Wasm virtual machine. Performance is a
concern here, however. To address this, we develop a partial compilation pass which
selects “chunks” of PB to translate into Wasm, yielding a speedup when compared

with simply interpreting the chunks as bytecode.

1.3 Content Overview

We first describe the distinguishing features of Racket and WebAssembly to provide
necessary background. We then describe particular features of Scheme that make
compilation difficult; in particular, dynamically typed objects [13], and first-class
continuations [25]. We briefly address how Chez Scheme, a mature Scheme com-
piler that forms the backend for the current Racket implementation [20], solves these
problems. This sets the stage for understanding some of the unusual features in Chez
Scheme’s compilation model, allowing us to explain why Chez Scheme’s existing code

generation interface is particularly difficult to adapt for use with WebAssembly.

We then introduce the PB bytecode, an existing virtual instruction set for which a

Chez Scheme backend already exists [33]. PB was primarily developed for bootstrap-



ping builds of Racket on new platforms, but we re-purposed it for use with Wasm. As
part of this effort, we wrote a disassembly tool for PB that we use to give examples
of what the bytecode looks like and to demonstrate how certain high-level Scheme

features are compiled.

We then introduce PBChunk, a pre-existing partial compilation approach developed
by Matthew Flatt of the Racket project that allows portions of PB to be compiled

into equivalent C code. PBChunk provides the inspiration for our own approach.

Finally, we introduce our own partial-compilation system, Wasm-PBChunk. We de-
scribe the system at a high level, including some of the relevant algorithms for selecting
chunks of PB to partially compile. We provide explanatory samples of the system’s
output, so the reader can understand what PB translated to Wasm looks like. We
benchmark our system using a subset of the Larceny [30] benchmarking suite, which
demonstrates the breadth of programs our system is capable of running and allows

us to analyze the system’s strong and weak points.

We hope that our work will be informative for others who wish to port languages to
Wasm — especially other functional languages and languages with a non-traditional

runtime model.



Chapter 2

RELATED WORK

2.1 Racket-to-wasm compilation

The most notable previous work on Racket-to-Wasm compilation was a Master’s The-
sis completed by Matejka [32], in which a standalone compiler for expanded Racket

programs was created.

Matejka initially attempted to solve the Racket-to-Wasm compilation problem by
creating a backend for Chez Scheme. The work here did not end up proving to be
fruitful, for the simple reason that the semantics of Wasm are not easily adapted to
the fundamental execution model that is used in Chez Scheme generated code. The

difficulties in bridging the execution semantics will be described in more detail later.

Matejka’s compiler, rasm, operates on expanded Racket, re-using the existing Racket
expander. The compiler supports a subset of top-level forms and most expression
forms — the notable exception being continuation and syntax related primitives. Some
core functions, such as car and cdr, are re-implemented, but rasm does not support
the core Racket runtime and so notably lacks support for garbage collection, thread-

ing, and numerous other features.



2.2 Scheme-to-wasm compilation

2.2.1 Guile to Wasm (Hoot)

The Hoot project [26] is one of the most complete and well documented current efforts
towards an Ahead-of-Time Wasm compiler for a Scheme-based language. Hoot is an
experimental compiler for GNU Guile [22], an implementation of R6RS Scheme [38].
Hoot is especially unique in that it aims to be as complete as possible, meaning that
it features support for a value representation for Scheme objects, variable arguments,

tail calls, delimited continuations, and the numeric tower.

Of particular interest is the delimited continuation implementation; to implement
this feature, a virtual stack was needed. In order to use a virtual stack instead of
the Wasm stack, every call needs to be a tail call. A tailify transformation was
added to Guile’s CPS intermediate language that converts every call into a tail call
[51]. Non tail calls are dealt with by splitting the continuation of a non-tail call into a
separate continuation that is pushed onto a virtual stack, before performing a tail call.
Returns are then executed by popping the most recent continuation from the runtime
stack and again performing a tail-call. Continuations themselves are implemented by
“slicing” and restoring this virtual stack. Continuations will be described in more

detail later.

Note that tail call support relies on the upcoming tail call proposal [50] for Wasm
that adds the return_call and return_call_indirect instructions. Additionally,
Hoot’s value representation [51] is entirely dependent on Wasm’s upcoming GC pro-

posal [49] since it relies on new support for GC-allocated Wasm structs.



2.3 Racket Transpilation

There are a number of projects which do not target Racket specifically, but are aimed
at providing alternative implementations of Racket — either through novel interpreter

techniques, or transpiling Racket to another higher-level language.

2.3.1 Pycket

Pycket is what is known as a “Tracing JI'T Compiler”; in effect, the project made use
of the RPython framework in order to produce a Just-in-Time Compiler based on a
preexisting interpreter. The key idea behind Pycket was to implement an AST-based
Racket interpreter in RPython, and then use the RPython tool-chain to generate a
JIT compiler from that interpreter. The project had promising performance results,
exceeding the performance of the standard Racket implementation in some cases [7].
Unforunately, RPython does not support the generation of JIT compilers which target

Wasm — otherwise, the Pycket approach would be a promising option.

2.3.2 RacketScript

RacketScript is a compiler from Racket to JavaScript. Like many other alternative
Racket compilers, RacketScript uses fully-expanded Racket programs as input. It
translates expanded Racket programs to ECMAScript 6. The RacketScript project
is fairly experimental, and notably does not support tail call optimization, continu-
ations, or the full suite of Racket numeric operations [52]. As Matejka notes in his
thesis, the problem of translating Racket to JavaScript is quite different than the

Wasm problem, primarily because many high-level features of Racket — such as lists



and higher-order functions — have JavaScript analogues, which greatly simplifies the

translation process [32].



Chapter 3

INTRODUCTION TO RACKET

This chapter gives a brief overview of Racket, a research language with some unique
features that are worthwhile to discuss. Racket provides a very interesting and robust
programming environment, and expanding the reach of this programming environ-

ment is one of the core motivations behind this thesis.

3.1 Functional Core

The core of Racket is a small, functional language based on Scheme. Scheme itself
was originally developed at MIT by Guy Steele and Gerald Sussman as a more func-
tional dialect of Lisp [40], and as a way to explore Carl Hewitt’s “Actor Model” of
computation [24]. Scheme is heavily based on the Lambda Calculus, as can be seen

in its simplistic syntax and its relatively simple evaluation model.

Part of the basic philosophy of Scheme is to provide a minimal set of primitives
on which much more complex constructs can be built. Complexity can be built up
incrementally through the use of syntax transformers that rewrite higher-level syntax

into just the core forms.

Racket also contains a very small set of core forms that implement the core behavior
of the language, and are shown in Figure 3.1. Notice how compact the set of core
forms actually is; it is quite minimal, given that Racket is a fully-featured modern
language. In Racket, much of the complexity that would otherwise be embedded in

the core language is defined on top of the core language using syntax transformations.
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xpr = id

(#%plain—lambda formals expr ...+)
(case—lambda (formals expr ...+) ...)

(if expr expr expr)

(begin expr ...+)

(begin0 expr expr ...)

(let—values ([(id ...) expr| ...) expr ...+)
(letrec—values ([(id ...) expr] ...) expr ...+)
(set! id expr)

(quote datum)

(quote—syntax datum)

(quote—syntax datum #:local)
(with—continuation—mark expr expr expr)
(#%plain—app expr ...+)

(#%top . id)

(#%variable—reference id)
(#%variable—reference (#%top . id))
(#%variable—reference)

Figure 3.1: Racket top-level expression forms

3.2 Language Oriented Programming

Racket is described in the Racket Manifesto [17] as a language for creating other
programming languages. What this means, fundamentally, is that Racket is about
allowing a user to write code to solve a particular problem in the language that is

most appropriate for the task.

Racket features an advanced, hygienic macro system on which numerous other lan-

guages can be built.

Racket’s macro expansion system is more advanced than Scheme’s, and allows for cre-
ating new languages that may differ in syntax but are still parsed and expanded into
core Racket. Through this facility, alternate languages such as Typed Racket, a grad-
ually typed variant of Racket, and Scribble, a language for writing documentation,

have been developed.

10



(module example racket
(define (map f 1st)
(cond
[(null? 1st) ']
[(pair? 1st) (cons (f (car 1lst))
(map £ (cdr 1st)))1)))

Figure 3.2: Module implementing a simple “map” function

(linklet ((.get-syntax-literal!) (.set-transformer!))
((1/map map))
(void)
(define-values (1/map)
(#)iname
map
(lambda (f_1 1st_2)
(if (null? 1st_2)
(let-values (O ')
(if (pair? 1lst_2)
(let-values ()
(cons (f_1 (car 1st_2))
(1/map f_1 (cdr 1st_2))))
(void))))))

Figure 3.3: Expanded linklet for “map” module

Within Racket itself, there are numerous sub-languages, such as match for pattern
matching, and the Racket object system, that are defined as syntax transformations

on top of the base language of Racket.

3.3 Racket BC vs. Racket CS
Since Racket is an evolution of Scheme, the Racket project originally evolved from

an implementation of a Scheme interpreter along with a set of graphical libraries

[20]. The original Scheme interpreter was written in C, so as the project evolved

11



a significant amount of C code was added to improve the interpreter by building a
JIT compiler and new runtime components. This left a large portion of the Racket
compiler and runtime as a C-implemented system, when experience showed that the
Racket-implemented portions of the project were much easier to maintain [20]. Thus,
an effort was started to re-implement the Racket compiler itself in a higher-level
language. This caused a bifurcation in implementations; the legacy implementation
is now known as the “BC” implementation, and the new implementation is known as

Racket CS, for Racket on Chez Scheme.

3.4 Compilation Pipeline

The compilation process for Racket CS is comprised of the high-level steps outlined in
Figure 3.4. A Racket module is first parsed into S-expression form using the reader.
Racket’s macro-expander both parses S-expressions into valid Racket (including lexi-
cal information), and expands any macros that are present. The expansion process is
recursive, since macros may expand to other macros. The expanded source is further
split into linklets, where each linklet features only the core forms. Figure 3.2 shows an
example Racket module implementing the higher-order function primitive map. One
of the linklets from the fully expanded form of the module — in particular, the linklet
containing the expanded version of map — is shown in Figure 3.3. Notice that the
cond has been expanded into nested if forms, the define has been expanded into

define-values, and intermediate let-values forms have been introduced.

Since Chez Scheme is a compiler for R6RS [38] Scheme specifically, the expanded
Racket linklets must first be translated into Scheme using a “schemify” pass. Though
highly similar, expanded Racket is not necessarily valid Scheme and thus some trans-

formations have to take place [20]. Finally, the new Scheme linklets can be fed through

12



S-expression Reader

Expansion

Schemify

Native Compile (Chez)

Figure 3.4: Racket CS high-level compilation steps

Chez Scheme to be compiled to native code. The native-compiled Scheme is dynami-
cally linked with a runtime system including the garbage collector and a core runtime

that provides IO, threading, and the like.

3.5 Uses (Research, Education)

One of the primary motivations for creating Racket was as an educational tool [17].
Racket’s creators wanted a better way to teach Scheme, a language that is featured
in the famous textbook Structure and Interpretation of Computer Programs [1]. This
led to the development of an interactive IDE, DrRacket (originally, DrScheme) [18]
and a suite of interactive libraries. Further, a textbook for teaching principles of

Computer Science in Racket, How to Design Programs (HtDP), was created [15].

Racket is also fundamentally a language for Programming Languages research. In
particular, Racket’s macro expander served as a test bed for a new approach to
hygienic macro expansion using “sets of scopes” [19], and Typed Racket allowed for

the invention of “occurrence typing” [42].

13



Chapter 4

COMPILING RACKET AND SCHEME

This chapter gives a brief overview of some challenges present in compiling a Scheme-
based language such as Racket. We give a brief overview of how Chez Scheme,
Racket’s backend, deals with these challenges. This background is particularly nec-
essary because the approach we will introduce deals directly with code generated by
Chez Scheme, which makes heavy use of the concepts that will be discussed in this

chapter.

4.1 Chez Scheme and Racket CS

Chez Scheme is the work of Kent Dybvig and others. It is a compiler for an augmented
version of R6RS [38] Scheme that has been continually developed since its inception

nearly 30 years ago [12].

Chez Scheme was originally proprietary software licensed by Kent Dybvig. The code
was acquired by Cisco when Dybvig began working at the company, and in 2017, Cisco
decided to open source the project. This allowed the project to be forked and built
upon, allowing for experiments with hosting the Racket compiler on Chez Scheme

120].

Chez Scheme is an ideal compiler and runtime environment for Racket to target for
a variety of reasons. Since Chez Scheme implements a version of Scheme, the Chez
Scheme system already features support for tail calls and efficient first-class con-

tinuations [20]. Continuation support in particular is very rare for a programming

14



environment to support out of the box, but it has been a core feature of Chez Scheme’s
design since the beginning. Chez Scheme also supports a numeric tower similar to
Racket’s, which includes arbitrary precision arithmetic. Thus, core numeric oper-
ations in Racket were more straightforward to transfer over when porting Racket’s

backend to Chez Scheme [20].

As a final reason, Chez Scheme is a mature project with a fully-featured runtime
that includes a garbage collector and threading support. The compiler can output
native code for a variety of machine architectures, and thus gives Racket access to

native-level performance on multiple platforms.

4.2 Challenges in Scheme Compilation

Two features that complicate Chez Scheme’s compilation model are described below.
Scheme’s support for first-class continuations and its dynamically-typed object model
are challenging to implement efficiently and thus it is worth briefly introducing Chez

Scheme’s approach to implementing these features.

4.2.1 Compiling Continuations

First-class continuations are an unusual feature present in Scheme and require a

carefully designed runtime model.

In Scheme, a continuation represents a captured execution context. The execution
context can be conceptualized as the “remainder” of a computation. For example, in
the expression (* 10 (+ 1 2)), when the sub-expression (+ 1 2) is being evaluated,
the (most) current continuation would be (x 10 [1), where [] is a hole to be filled

in with the result of a sub-expression.
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A continuation acts like a procedure object, but when invoked it restores the execution
context that was captured. The arguments to the continuation procedure fill the holes
in the execution context. Thus, if (¥ 10 []) was captured as some continuation k,
then (k 3) would restore the execution context as (* 10 3), in addition to any outer

levels of context.

At the runtime level, at a particular point during execution where a continuation
capture occurs, the continuation can be represented by the current “chain” of stack
frames. This is because the remainder of program execution is determined by these
frames [25]. Continuation capture, then, must mark or store these frames for future
use. When a continuation is reinstated, the current sequence of stack frames must be

overwritten with the previously stored sequence.

One method of implementation for a continuation model is to use a heap-allocated
linked-list for all stack frames, allocating a new frame on the heap every time a
procedure is called. This is inefficient, though, because it adds overhead for every
procedure call, and a garbage collector must do more work to collect old stack frames

[25].

Chez Scheme uses a hybrid stack-heap approach. A control stack is used, which is
a heap-allocated linked list of stack segments, where a stack segment is comprised of

one or more individual frames [25].

Continuation Capture is implemented by splitting the current stack segment in
two; the upper portion becomes a new stack frame, and stack frames in the preceding
portion are sealed off as part of the continuation. Splitting the segment is a constant
time operation up until the current stack segment is exhausted, at which point a new
stack segment must be allocated and copying must occur. Thus, continuation capture

is inexpensive on average [25].
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Continuation Reinstatement requires copying an old portion of a stack segment
over top of the current one. Because a captured portion of a stack segment could
be quite large, there is an upper bound placed on the size of a stack segment that
will be copied [25]. If the stack segment that makes up the continuation is too large,
then the stack segment is split in two, and only the top portion (the “closest” frames)
are copied over initially. The stack segment that comprises the continuation must
be walked over to find a splitting point that occurs at a frame boundary within the

segment [25].

4.2.2 Object Representation

Scheme is dynamically typed and handles memory allocation for the user. There
are some native sized types — notably the fixnum and flonum types — that can fit
in registers. Most other types — including arbitrary precision numbers, strings, and
pairs — are handled as pointers at runtime. Scheme programs must be able to inspect

types at runtime in order to behave appropriately.

One option is to store every Scheme value on the heap along with an associated type
tag. This is inefficient, however, because in this case any type check will involve a

memory access.

Chez Scheme employs a system of pointer tagging in which all values are aligned on
an 8-byte boundary, allowing the lower three bits to be used as the type tag [13]. In
the case of small data types such as fixnums, the upper bits of a “pointer” simply
store the data itself instead of an address. Since there are more than 8 Scheme types,
the most common ones (such as pairs and fixnums) are picked to have dedicated type
tags, and a separate escape tag is used as a catch-all to indicate that a type tag should

instead be read from the object that is pointed to.
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The pointer bits are divided into segment and offset. Each segment corresponds to a
metatype — an entry in a segment table. The entries themselves contain information
that is used by the garbage collector, including generation information and a dirty
vector that indicates assignment. Thus, objects with the same metatype occupy the
same segment of address space, which is practically useful for Chez Scheme’s memory
management. This segmenting of objects based on metatype properties is a form of

the BIBOP (Big Bag of Pages) model [13].

4.3 Impact On Generated Code

A consequence of Chez Scheme’s runtime model for continuations and objects is that
machine code generated by Chez Scheme will look quite different from what might
be generated by a C compiler. In particular, the procedure calling model explicitly
separates manipulation of the Scheme call stack from the calls themselves, by using
branches for performing a jump to the callee and explicitly performing all frame
allocation and return address placement. This is quite different from Wasm’s model
of function calls, in which allocation of a new stack frame for the callee is an implicit

part of the call instruction’s behavior.
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Chapter 5

WEBASSEMBLY (WASM)

This section provides a brief overview of WebAssembly, an emerging platform for

running client-side code served over the web.

5.1 History

5.1.1 Client Side Code on the Web

There is a long history of attempts to bring client-side code to the web. Numerous
frameworks have been developed over the years, including Adobe Flash, Java Applets,
Microsoft ActiveX, and Google’s NaCL (Native Client). Ultimately, all have had

notable flaws leading to a discontinuation of their use.

It is worth briefly reviewing the aforementioned frameworks, and describing why they

are no longer in use. This allows Wasm’s existence to be better put into context.

Java Applets were one of the first entries into the space of client-side code on the
web, but they faced numerous difficulties. For one, Java was a proprietary tech-
nology owned by Sun Microsystems, and thus any efforts to standardize Java and
Java Applets would necessarily be tied to Sun’s desires. Further, Java Applets were

memory intensive and faced numerous security vulnerabilities [29].

Java Applets were largely superseded by Adobe Flash, a web scripting platform from
Adobe. Flash allowed for interactive applets with images and video, which were

important capabilities to have on the web at the time.
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Flash, again, was heavily tied to one company, and security was a large issue. Flash’s
high resource requirements meant that it was notably not offered as a capability in the
IOS web browser. One piece of botnet malware for Flash was so severe that in 2010,
almost 10% of all Mac computers were infected [3]. In the mid 2010s, major browser
vendors began disabling Flash by default and support for Adobe Flash officially ended
in 2020 [3].

Native Client, or NaCL, is a sandboxed environment for running native x86 programs.
While security is never guaranteed, the use of an inner and outer sandbox provide

assurances that programs cannot misbehave [53]

One of NaCL’s largest downsides is its lack of portability; it only supports x86.
PNaCL, or Portable Native Client, was an answer to this. PNaCL supports portable
LLVM bytecode instead of native code [11]. The primary hindrance to wide adoption
of PNaCL was the choice of LLVM as an executable format. LLVM is a very complex
bytecode, and its functionality is heavily tied to the Clang project, so its specification
is not static. One possible alternative would be to standardize a subset of LLVM for
exclusive use on the Web, but with the effort required to do this a new portable

executable format for web programming could just as well be created.

5.1.2 JavaScript

JavaScript has so far been the undisputed winner in client-side web programming,
with an ECMA standard now in its 13th edition [14]. Originally developed by Brendan
Eich over a period of less than two weeks, the first JavaScript interpreter shipped with
NetScape Navigator. Since this time, JavaScript has become a “success disaster” of

sorts; though the language has numerous warts in its design, it is now one of the most
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popular programming languages, and every major browser now sports an advanced

JavaScript runtime complete with JIT compilation and heavy optimizations.

5.1.3 Emscripten

If we already have JavaScript, why do we need anything else as a compiler target?
Emscripten is a project that has explored bringing traditionally native compiled lan-
guages — such as C and C++ — to the web [54]. Emscripten has always been a compiler
for LLVM, the intermediate representation used by the Clang project. Initially, Em-
scripten was developed in order to translate LLVM into JavaScript. This was a rather
unusual task in that it was effectively the inverse job of a typical compiler; while a
typical compiler generally translates a higher-level language into a lower-level one,
Emscripten was focused on translating LLVM — an intermediate form of assembly

language — into JavaScript, a higher-level language.

There are of course numerous challenges here, since LLVM features unstructured
control flow and lower-level manipulation of the stack, while JavaScript notably does
not. Another major challenge was mapping LLVM’s strictly-typed semantics onto
JavaScript, a dynamically-typed language. As a result of the typing challenges in
particular, Emscripten ended up targeting a subset of JavaScript known as asm.js
[5] that restricts JavaScript operations to those that have more predictable behavior

upon JIT compilation in modern JS engines.

It became increasingly clear, however, that asm.js was far from an ideal compiler

target, and thus asm.js arguably provided the inspiration for Wasm.

Emscripten now targets Wasm, but does still make use of some of the same com-
pilation techniques that were developed for targeting JavaScript. Though Wasm is

lower-level and is designed to be a better compiler target comparatively (it has static
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typing guarantees, for example), it still uses structured control flow where LLVM
notably does not [23]. The presence of structured control flow in Wasm and the

challenges this presents for compilation will be explored further later in this thesis.

One reason Emscripten has made an impact is because it can be made part of the
LLVM toolchain. This then allows any language with a Clang frontend — notably, C
and C++ — to be compiled directly to Wasm. To host C and C++ code on the web,

Emscripten provides support for its own version of libc [44].

5.2 Enter Wasm

Wasm is not meant to replace JavaScript; instead, it is meant to be a better compiler
target to complement JavaScript with high-performance compiled code from other
higher-level languages. Wasm code exists in self-contained modules that can inter-
operate with JavaScript. Thus, performance critical sections of code can be written
in a language that is compiled to Wasm, and exported such that JavaScript programs

can call into them.

As mentioned previously, Wasm is primarily intended to be a web-compatible compiler
target for higher-level languages. Wasm was carefully designed from the beginning

with a few specific goals in mind, outlined in [23]; Wasm was designed to be:

e Safe. Wasm features memory safety and process isolation. Wasm modules are
isolated to the point of near inconvenience; Wasm memory accesses are defined

exclusively with respect to memory objects in a given module.

e Fast. Wasm can be compiled ahead of time to a variety of machine architec-

tures. It is statically typed to allow for a level of safety and greater ahead of
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(value types) t:=1i32i64 | 32 | f64 (instructions) e ::= unreachable | nop | drop | select |

(packed types) tp =8 i16 | i32 block tf ¢* end | loop tf e end | if if e else e” end |
(function types) #f ::= 1" — ¢* br i | br_if i | br_table i* | return | call i | callindirect tf |
(global types)  tg ::= mut’ ¢ get_local i | set_local i | tee_local i | get_global i |
set_global i | t.load (tp_sz)’ a o | t.store tp” a o |
unop;y = clz | ctz | popent current_memory | grow_memory | t.const c |
unopgy ::= neg | abs | ceil | floor | trunc | nearest | sqrt t.unop, | t.binop, | t.testop, | t.relop, | t.cvtop t_sz”
binop; = add | sub | mul | div_sz | rem_sz |
and | or | xor | shl | shr_sz | rotl | rotr (functions) f 2= ez” func tf local t* e* | ez* func tf im
binop,y ::= add | sub | mul | div | min | max | copysign (globals)  glob ::= ez” global tg ™ | ex” global tg im
testop,y = eqz (tables) tab ::= ez” table n ¢* | ez” table n im
relop,y :=eq|ne | lt_sz | gt_sz | le_sz | ge_sz (memories) mem ::= ez memory n | ez* memory n im
relopey :=eq|ne|lt|gt|le|ge (imports) #m = import “name” “name”
cutop ::= convert | reinterpret (exports) ex := export “name” ; )
sz n=s|u (modules) m ::= module f* glob* tab” mem’

Figure 5.1: Full Wasm grammar [23]

time optimization, and its low-level stack operations translate fairly easily to

native operations on modern processors.

e Portable. Wasm has a precise and very simple formal semantics [23] that
makes no reference to any underlying platform. Wasm can be executed in any
compliant virtual machine. Wasm was designed so that support for the format
could be added with only small extensions to existing JavaScript VMs, to allow

for increased adoption.

e Compact. Wasm’s creators recognized that any format for storing executable
code to be served over the web must be compact to allow for easy transmission
over the wire. Wasm is defined as a binary format, and this decision alone
allows for a more compressed representation. Further, it takes only a single

pass to verify that a Wasm module is well-formed [23].

5.3 Syntax

Though Wasm code is executed in binary form, Wasm syntax is defined in terms of

a formal grammar [23]. The grammar is quite compact, and is shown in Figure 5.1.
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Wasm further has a text-based format known as WAT (WebAssembly Text) that uses
an S-expression based representation for meta-elements — such as modules, imports,

and definitions — as well as instructions themselves.

An example program is shown in Figure 5.2.

5.4 Semantics

5.4.1 Stack-based Operations

Wasm is a stack-machine [23], meaning that all operations are defined with respect
to an abstract expression stack. It is established that stack-based bytecode formats
generally have a smaller encoding size [37], which is a major reason for this choice in

Wasm'’s design.

Nearly every instruction supported in Wasm will either consume one or more values by
popping them off the evaluation stack, or produce one or more values by pushing them
onto the evaluation stack. Many instructions do both. For example, the 132.add
instruction (seen in Figure 5.2) expects two operands of type 132 to be placed at the
top of the evaluation stack, and produces a single result: their sum, with a defined

overflow behavior.

5.4.2 Structured Control Flow

A notable feature of Wasm is its structured control flow, which is unusual for a low-
level bytecode. What this means is that control in Wasm is achieved through the use
of the constructs loop, block, if/else, br, br_if, call, call_indirect, return,

br_table, and unreachable — several of which are similar to features found in high-
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(module
(memory 100)
(export ”fact” (func $fact))
(func $fact (param $n i32) (result i32)
(local $i i32)
(local $p i32)

(i32.const 1) ;; push 132 constant 1 onto stack

(local.set $p) ;; pop stack value and store in local

(i32.const 1)
(local.set $i)

(block $outer ;; a named BLOCK, S$outer.

(loop $loop ;; a named LOOP, $loop

(local.get $i)

(local.get $n)
(i32.gt_s)

(br_if $outer) ;; a branch to the END of

:: $outer

;; instructions can be nested

;; in an expression based form;

(local.set $p (i32.mul
(local.get $p)
(local.get $i)))

(local.set $i (i32.add
(local.get $i)
(i32.const 1)))

:; a branch to the BEGINNING of $loop.
(br $loop)))

;7 implicit return
(local.get $p)))

Figure 5.2: An simple factorial routine in Wasm
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level languages. Wasm does not allow unstructured control flow constructs such as
goto or arbitrary branching. The use of structured control flow prevents irreducible
control flow graphs [23]. A CFG is reducible if and only if every sub-graph identifying
a loop is dominated by a loop header. This means that loop headers can be identified
using back edges in the CFG, leading to a linear time algorithm for loop identification
[35]. The structured control flow restriction makes it possible to validate Wasm code

in a single pass.

In Figure 5.2, we can observe Wasm’s structured control flow. A block is best under-
stood as the introduction of a new “control scope” on a control stack, and a branch
behaves more like a “return” operation than a jump. Because of this abstract model,
control can only be transferred to blocks in scope, and the point of transfer in the
enclosing block is determined by the type of block. In Figure 5.2, we see a 1oop block
that is used to implement a local loop for computing a factorial product. Thus, the
br $loop instruction unwinds the control stack up until the $loop, and so control

re-enters $loop.

We also see a block, $outer, that wraps the loop. Since $outer is a block, when the
instruction br_if $outer is executed all nested blocks including $outer are popped

from the control stack so control resumes after the $outer block.

5.5 Wasm Implementations

Wasm is now supported in nearly every major browser including Chrome, Firefox,
Safari, and Microsoft Edge. It is supported in Chrome’s V8 [48], Firefox’s Spider-
Monkey [39], and Apple’s JavaScriptCore [27] JavaScript engines. Additionally, there

are multiple standalone Wasm VMs, including WasmTime [47] and Wasmer [46].
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The primary role of a Wasm runtime is to execute Wasm programs — according to
the Wasm specification — in some fashion. Wasm can be fully interpreted, but it is
often AOT or JIT compiled for performance reasons. JIT compilation in particular
is popular for in-browser Wasm implementations, because minimizing page startup

time is highly important in a browser context.

The Wasm runtime is a standard user space program, but it does need to provide an
interface for the Wasm programs it executes to access operating system capabilities.
Emscripten’s original solution to this problem was to port libc to the browser, pro-
viding implementations of routines such as malloc, printf, and the like that were
specific to running in a browser environment [44]. However, this is non-standardized
and web-specific, and Wasm is intended to be a truly platform independent standard.
As a result, a group of interested parties started the WASI (WebAssembly System
Interface) Working Group [45]. The general idea behind WASI is to develop a stan-
dard for a platform-independent interface that Wasm programs can call into. As a
result, toolchain implementations for various languages including C/C++, Rust, and
others can add WASI support to their standard libraries to allow them to target a

platform-independent Wasm implementation effectively [44].
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Chapter 6

CHALLENGES IN USING A CHEZ SCHEME BACKEND

Chez Scheme uses a nanopass architecture [28] in order to compile Scheme from source
form all the way down to machine code. Using the nanopass framework, Chez Scheme
defines around 35 intermediate languages and around 50 micro-passes to translate
between them [28], where multiple passes may be applied to the same intermediate
language. Each intermediate language may extend a previous language by removing
high-level constructs in the language being extended, and/or adding new low-level
constructs. For example, the L4 language extends the L3 language, but removes the
set! form for variables that have indefinite extent. The pass that translates L3 to
L4 is called convert-assignments, and its only job is to remove the set! form for

variables with an indefinite lifetime [6].

Chez Scheme’s final intermediate languages are numbered L15a...L15c, L16, with
L16 being the last intermediate language before machine code. The L15% languages
are responsible for various transformations that are just above the machine code
level. L15c consists of low-level assignments (to temporaries or memory locations)
and simple value producing operations, with control flow being accomplished via
predicates and jumps. The instruction selection pass consumes L15c and outputs
L15d, where L15d augments L15c with actual machine instructions. The instruction
selection pass relies on Chez Scheme backend modules, one of which exists for each

ISA that is supported by Chez Scheme.

Each backend module must implement a specific backend interface, and the backend

interface assumes capabilities that would be difficult to implement for Wasm. In
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his Master’s thesis, Grant Matejka outlined some of these difficulties [32]. These
observations are worth re-stating and elaborating on, to make the reasons for our

own approach clearer.

6.1 Registers

First and foremost, the Chez Scheme backend interface assumes the use of registers.
Wasm has no registers; instead, Wasm has locals that are essentially named locations
on the virtual stack. A fixed set of locals could be used to emulate registers, however,
so this is not necessarily a critical issue. It is unclear how applying Chez Scheme’s
register allocation pass to a collection of Wasm locals would impact the quality of
generated Wasm, given that a Wasm JIT will ultimately be performing its own register

allocation.

6.2 Arbitrary Jumps

Jump translation would be one of the more difficult pieces to adapt Chez Scheme’s
backend to. Any Chez Scheme backend must expose a procedure, md-handle-jump,
that the Chez Scheme instruction selection pass uses directly when performing the
translation between jump operations in L15c and L156d. md-handle-jump must trans-
late intermediate jump instructions in L15c¢ into a form that is compatible with a given
architecture. It is assumed that md-handle-jump can handle several jump forms that
occur in L15c, including: jumping to a memory address, jumping to a label, jumping

to a literal (relocated value), or jumping to an immediate.

Jumping to a memory address is simply impossible in Wasm; branches are defined

with respect to labels, and calls are defined in a type-safe way with respect to functions
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(or typed function pointers) [23]. The same issues hold for jumping to a relocated

address, or jumping to an immediate value.

Jumping to a predefined label would be possible, provided block nesting allows for it.
However, a CFG transformation such as Emscripten’s Re-Looper [54] would need to
be performed to ensure that a block is nested such that it can branch to its successors.

This is an involved transformation and would likely involve adding a new pass.

6.3 Calling Conventions

R6RS Scheme guarantees proper tail calling behavior. At an implementation level,
this means that if a function’s body is reduced to a call with no continuation, the
call must re-use the same stack frame. In his paper outlining the formal semantics
of tail calls [8], William Clinger notes that under a proper tail-call model, a call is
best understood as a jump that changes an environment register. The stack is used
for storing the current continuation, or the work that remains to be done [10]. As a
result, when a call occurs, a new stack frame is only needed to avoid overwriting the

current continuation if it exists, not simply as a feature of the call.

This insight is crucial to understanding Chez Scheme’s calling convention; it does not
use stack frames unless it is forced to. By default, it treats every call as a branch, and
uses the stack on a by-need basis. Structured returns are never used within Scheme
code. Any return is an explicit branch to a return address, where the return address

is stored on the stack only if there is a non-empty continuation for the current call.

Wasm is a notable departure from this model, since it only uses structured calls. In

Wasm’s formal semantics [23], calls reduce to the creation of a new locals block on
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the execution stack with certain locals initialized to the argument values. This simply

does not allow us to emulate proper tail-calling behavior at the function level.

Wasm’s upcoming tail call proposals may allow a return_call instruction with
proper tail calling semantics [50], but the current state of Wasm does not support

this semantics. This is a major hurdle to cover in using Chez Scheme’s backend.

6.3.1 Separate Compilation Pipeline?

In his thesis on Rasm, Grant Matejka theorized that a higher-level intermediate lan-
guage from a much earlier pass of Chez Scheme might be used as a branching off
point for compilation to Wasm, as it is the subsequent passes that transform the
intermediate language into a form that is increasingly less amenable for translation
to Wasm’s control constructs [32]. The hindrance here is that an entirely separate
compilation pipeline would need to be created, specifically for Wasm. There would
be significant complexity involved, and the pipeline would be highly specific to Wasm

and thus more difficult to justify maintaining.

6.4 Final Rationale

We decided not to pursue the path of backend creation. While it may ultimately be
possible to adapt Chez Scheme’s backend for use with Wasm, it is unfortunately not
a straightforward solution. Most likely, new intermediate languages would need to be
designed and introduced, with new passes to go along with them. These would have
to be somehow slotted in with the existing set of passes, which may be tricky if they

are Wasm-specific.
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Fundamentally, any Wasm-specific passes would break the abstraction imposed by
the backend, which assumes an identical set of passes for every supported ISA (with
implementation-level details abstracted away by the backend interface). The approach
we will introduce shortly alleviates the need for any backend modification, and thus

greatly simplifies the development process.
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Chapter 7

PORTABLE BYTECODE (PB)

Our approach relies on a bytecode known as PB, or Portable Bytecode. PB is already
a valid output target for Chez Scheme; i.e., a PB backend module has already been
created [33]. An interpreter for the bytecode already exists and can be compiled along

with Chez Scheme’s runtime, thus allowing programs compiled to PB to be executed.

7.1 Porting The Compiler

The primary reason for PB’s existence is portability. Chez Scheme is a self-hosted
compiler, meaning that the compiler itself is written in Chez Scheme. Chez Scheme
itself is a superset of the R6RS standard. If Chez Scheme is to be ported to a
new platform, there are several pieces that must be in place. First and foremost, a
backend must be created for the new platform, using Chez Scheme’s existing backend
framework. Many different ISAs are already supported, including x86, ARM, and
PowerPC.

With a backend in place, the problem of compiling the compiler source itself is a

roadblock.

Suppose we wish to compile Chez Scheme for some new platform x. One option would
be to use an existing (different) Scheme implementation that can run on platform z
to create a new build. Unfortunately, since Chez Scheme is a unique superset of
R6RS, we are unlikely to find another Scheme implementation that can compile Chez

Scheme on platform zx.
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Because of this, we have to resort to building Chez Scheme (with the new added
backend) on a separate machine with say, architecture y, on which Chez Scheme is
already supported. Then, the new compiler (which runs on platform y but now has
the capability to target platform x) could be used to cross-compile itself, and the

resulting binary could be moved to a machine of type x.

Ideally, we would wish for Chez Scheme to be bootstrapped on a single machine with
no dependencies other than the compiler source itself (and standard build tools). This
is where the utility of PB comes into play. The Chez Scheme compiler and kernel
(including any Scheme-implemented runtime facilities) can be compiled to platform-
independent PB bytecode and distributed along with the source. Then, on a new
machine of type z, a user can run a PB-build, which will first compile the C portion
of the Chez Scheme kernel — importantly, the PB interpreter — for machine type
x. The assumption is that z will always have a compatible C compiler. Then, the
provided boot files (which include the PB-compiled version of Chez Scheme itself)
can be run with the PB interpreter, effectively acting like a temporary Chez Scheme
installation on platform x. This new version of Chez Scheme can cross compile the

existing source for platform z, thus yielding a native executable.

7.2 PB Instructions

The PB architecture resembles a RISC architecture such as ARM. It has instructions

that can generally be divided into the following categories:

e Numeric; integer/floating point arithmetic and bitwise operations

e Control; several different branching variants
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e Memory and Indirection; including variants of load and store, and notably
a literal instruction that allows constant values to be interspersed in the

instruction stream and loaded

e Mov; numerous variants of mov, including those that allow for casting between

native floating point and integer values

e Synchronization; CAS, lock, fence, and atomic increment instructions

e FFT; instructions for reading from and writing to a separate “arena” used for
calling functions that use a C-style calling convention, and performing C-style

calls

There are a handful of other notable instructions that would not fall under the above

categories:

e Interp instructions allow for re-starting the PB interpreter loop with a separate
execution context. The instructions allow for recursive nesting of interpreter

loop calls.

e Call instructions support a fixed set of C prototypes that are specific to Chez
Scheme runtime functions. The interpreter will execute a call instruction as a
standard C-call to an address provided as part of the instruction. Arguments
are loaded from a set of predefined registers, and the return value is placed in

a predefined register.

e Return instructions specifically return from an instance of the PB interpreter

loop. Thus, they may be used for premature exit from an interpreter instance.

e PBChunk instructions contain an index into a function pointer table. When a

pbchunk instruction is encountered, the interpreter, that is written in C, loads
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the indicated function address — that refers to a separate function written in C —
from the table and calls the referenced function. Thus, a PBChunk instruction
results in a standard C-style call. The result of the call becomes the value of
the instruction pointer for the next iteration of the interpreter loop. PBChunk
instructions allow for generated fragments of C code to be used in place of the
bytecode that follows the pbchunk instruction. These generated fragments may
improve performance, as they are effectively an “unrolling” of the interpreter
loop. Notably, the table of chunk functions must be statically known when the
interpreter is compiled, as they are statically linked with the interpreter code.
Thus, only a limited set of chunk functions that are specific to a particular

program may be used in pbchunk instructions.

7.3 Disassembler

Racket contains a raco sub-command that is host to many utilities. Among them is
disassemble, a command that allows for disassembling individual functions that are
compiled and stored in-memory. The disassembler has support for x86, Aarch64, and

i386. We augmented the disassembler with support for PB.

At a high-level, raco disassemble takes a Racket procedure and dispatches the
compiled function to a handler for disassembly. raco disassemble supports both

Racket BC and Racket CS.

In the case of Racket CS, the underlying Chez Scheme debugging facilities are used to
extract the procedure and its metadata. The inspect/object primitive provided by
Chez Scheme is used to extract a list of relocations that are attached to a procedure.
The raw bytes consisting of the procedure instructions, along with a list of relocations,

are passed to a routine for disassembly.
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7.3.1 Relevant Concepts for Disassembly

Code Objects. In Chez Scheme, compiled code is stored in-memory as a code-
object. Generally, a code object corresponds to the code for an individual function
or closure. Code objects may represent built-in library functions, foreign procedures,

and user-defined procedures and closures.

Relocations are used as placeholders for data that may not be known at compile
time. The data can be a Scheme object such as a list, symbol or string. A relocation

may also be the address of a library or primitive function.

For an example of a primitive function, consider the procedure +, taking one or more
numbers and returning their sum. The implementation for + is a library function
within Chez Scheme’s boot files, which are loaded into memory when Chez Scheme

is started.

Scheme code is compiled to .so shared object files that notably are not linked to the

contents of boot files.

As a result, the code object for + will not be present in a compiled Scheme program.
Thus, when a particular .so file is loaded by Chez Scheme, it must be linked with
primitive library functions that are in Chez Scheme’s address space. Because of this

dynamic linking, all code objects have an attached list of relocations.

Each relocation contains:

e An offset into the code object

e A piece of data to be linked (a Scheme object or a primitive/library function)
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e A format which is machine-specific and indicates how the relocated value will

actually be loaded in machine instructions.

The linker will fill in each specified relocation entry within a code object at link-time

with the appropriate data to be linked.

In PB, relocations generally appear as placeholder bytes immediately following 1iteral
instructions. At runtime, the literal instruction will be used to load the relocated

data, which is either 4 or 8 bytes in length, into a register.

RP-Headers (return-point headers) are used for the purposes of garbage collection.
They are necessary because the Scheme stack is heap allocated and garbage collected.
In the case of a non-tail call, there will be a return back to the previous stack frame,
meaning that there may be data which needs to be retained in said stack frame. The

GC needs to know whether the stack frame for a caller could still contain live data.

For the purposes of disassembly, rp-headers must be differentiated from instructions

and treated as raw binary data.

Labels. The address of an instruction within the instruction range for a procedure is
considered a label if any other instruction within the procedure branches to it. The
disassembler should identify and reconstruct labels in order to provide a more faithful

output.

7.3.2 Design of the Disassembler

The disassembler works in two passes.

The first pass is needed to identify addresses that are labels. Since back-branching

is allowed, the entire instruction stream must be scanned in order to collect all local
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branch targets (branch targets within the bounds of the function being disassem-
bled). A non-local branch target is a branch target that is loaded from memory
or a literal instruction. The disassembler does not give any special treatment to

non-local branches.

As an additional portion of the first pass, the disassembler collects rp-headers. Differ-
entiating rp-headers from normal instructions is tricky, because there is no metadata
which describes rp-header placement within the instruction stream. Fortunately, for
PB a convention is followed: the adr instruction, which loads an address at an offset
from the instruction pointer, will only load an address immediately following an rp-

” and the adr instruction

header. This is because rp-headers occur at “return-points,
is nearly always used for loading return addresses. As a result, adr instructions can

be used as markers for identifying rp-headers.

The second pass of the disassembler is a scan over instructions whilst performing
book-keeping using the list of headers, labels, and relocations. Labels are printed
appropriately, and the contents of headers and relocation entries are printed as raw,
non-instruction data. Care must be taken to skip over an appropriate number of
bytes before interpreting the next instruction in the case of non-instruction data.
literal instructions are an interesting case, as they are technically variable-width.
The length of data following a literal instruction is equal to a machine word, meaning

that it may be either 4 or 8 bytes, depending on the platform.
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(define (add3 x y) (+ x y 3))

Figure 7.1: add3 example

7.4 PB Examples: Disassembler Output

7.4.1 Example 1: add3

As a first example, consider the code in Figure 7.1: a simple procedure which takes

two numbers, x and y, and adds 3 to their sum.

The PB instructions for add3 are shown in Figure 7.2. There are a variety of con-
structs here to explain. While the form of the PB instructions is quite similar to that
of many other architectures, Chez Scheme’s code generation conventions mean that

the output may not be easily comprehensible.

At address 8 we check that the value %acO0 is equal to 2. This is effectively an argument
count check (recall that the procedure add3 takes two formal arguments). In the event
that %acO contains the wrong count, we jump to .10, where we load the relocation
address of doargerror — the argument error handler — into %ts, before branching
to it. A sequence of (literal %reg) <data> (b %reg) is extremely common in
Chez Scheme-generated PB, where <data> is a relocation entry corresponding to a

procedure whose address is a relocation.

After the argument count check, we move an immediate value into %r11. Chez Scheme
uses a system of pointer tagging to allow for runtime type-checking, and this system
also allows for a size-limited set of constants to be encoded. In this case, the value
0x18 is the Chez Scheme encoding of the value 3; it is equal to the constant 3, shifted

left 3 positions. The rightmost 3-bits (all zeros in this case) can be checked as a mask
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.10

11

12:
16:
20:
24:
28:
32:
36:
40:

44:

48:

52:

56:

60:

64:

68:
72:

00013339 (subz %trap %trap (imm #x1)
#:signal #t)

000034 cf (btrue (label 11 (imm 52)))
0002044b (eq %acO (imm #x2))
00001 cced (bfalse (label 10 (imm 28)))
00180b02 (mov—16 %rl1l (imm #x18))
00000501 (literal %xp)
0366be0b (data) (relocation +)
00000001 (data)
000558b1 (1d—int64 %cp %xp (imm #x5))
00030402 (mov—16 %acO (imm #x3))
000d05d3 (bx %xp (imm #xd))
00000601 (literal %ts)
03a118f0 (data)

(relocation #<code doargerr >)
00000001 (data)
000600d0 (b %ts)
00000601 (literal %ts)
03a13dc0 (data)

(relocation #<code event
00000001 (data)
000600d0 (b %ts)

Figure 7.2: Disassembler output for add3
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(define (max a b)
(if (> ab) a b))

Figure 7.3: max example

to determine the type of data. We then load the address of the procedure + using an

argument count of 3, before branching to +.

7.4.2 Example 2: max

As a slightly more complex example, consider a simple definition of max in Figure 7.3,

returning the greater of two numbers.

In this example, runtime type-checking is used to enable polymorphic behavior. The
key insight here is that a and b are assumed to be numeric as they are passed as
arguments to the procedure >. However, there is no restriction on the type of a
and b beyond this. Scheme supports both fixed-size and arbitrary precision integers,
fixed-size floats, and infinite precision rational numbers. Fixed size integers can be
stored in a register and used with native comparison operations. Arbitrary precision
integers and rationals are stored as pointers to a Scheme-specific structure that must
be passed to Scheme standard library procedures such as >. Thus, the actual behavior

of the function differs depending on the precise runtime types of a and b.

Looking to Figure 7.4, we can see how this runtime polymorphism presents itself in

the PB instructions.

Instructions at addresses 8-16 combine the arguments, stored in %r9 and %r10, to-
gether before checking their mask with the constant 7. If the mask is zero, then we
perform a standard, native gt operation in order to determine which argument is

larger, and branch to either .10 or .11 depending on the result.
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12:
16:
20:
24:

.10

28:
32:

1

36:
40:

.12

44:

48:
52:
56:
60:
64:
68:
72:
76:
80:
84:
88:
92:
96:
100:
104:
108:
112:

0002044b
0000b8&cd
000a9f24
00070f5b
000018cd
000a094e
000008 cd

0009040a
000001d3

000a040a
000001d3

00013339

000040cd
000819cd
00101 acd
00181117
00009£d7
00001 fcH
00000601
0£231d80
00000001
00060040
00000099
00000000
0000018d
00000000
00181119
000819b1
00101abl

(eq %acO (imm #x2))
(bfalse (label 14 (imm 184)))
(ior %r15 %r9 %r10)

(cc %rlb (imm #x7))
(bfalse (label 12 (
(gt %r9 %r10)

(

bfalse (label 11 (imm 8)))

imm 24)))

(mov %ac0 %r9)
(bx %sfp (imm #x0))

(mov %ac0 %r10)
(bx %sfp (imm #x0))

(subz %trap %trap (imm #x1)
#:signal #t)

(bfalse (label 13 (imm 64)))

(st—int64 %r9 (imm #x8) %sfp)

(st—int64 %r10 (imm #x10) %sfp)

(add %stp %sfp (imm #x18))

(adr %rl5 (imm #x24))

(st—int64 %rl5 (imm #x0) %sfp)

(literal %ts)

(data)

(data)

(b %ts)

rp—header

(data)

(data)

(data)

(sub %sfp %sfp (imm #x18))

(

(

(relocation #<code event>)

ld—int64 %r9 %sfp (imm #x8))
ld—int64 %r10 %sfp (imm #x10))

Figure 7.4: PB instructions for max
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.13

116:
120:
124:
128:
132:
136:
140:
144:
148:
152:
156:
160:
164:
168:
172:
176:
180:
184:
188:

.14

192:
196:
200:
204:

000819c¢hH
00101 ach
00181117
00009fd7
00001 fch
00000601
0£f226ee0
00000001
000600d0
000000d9
00000000
0000018 f
00000000
00181119
000819b1
00101labl
0006044b
fftff68cft
ffffs5cdl

00000601
0£20d8f0
00000001
00060040

(st—int64 %r9 (imm #x8) %sfp)
(st—int64 %r10 (imm #x10) %sfp)
(add %sfp %sfp (imm #x18))

(adr %rl15 (imm #x24))

(st—int64 %rl5 (imm #x0) %sfp)
(literal %ts)

(data) (relocation #<code >>)
(data)

(b %ts)

rp—header

(data)

(data)

(data)

(sub %sfp %sfp (imm #x18))
(ld—int64 %r9 %sfp (imm #x8))
(ld—int64 %r10 %sfp (imm #x10))
(eq %acO (imm #x6))

(btrue (label 11 (imm —152)))
(b (label 10 (imm —164)))

(literal %ts)

(data) (relocation f#<code doargerr>)
(data)

(b %ts)

Figure 7.4: PB instructions for max
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Notice that %acO is used for storing the return value. At labels .10 and .11, we see
the instruction (bx %sfp (imm #x0)). This is an important idiom to understand.
%stp is the Scheme Frame Pointer, and it holds a pointer to Chez Scheme’s separate
control stack (see Chapter 2). By convention, return addresses are stored at an offset
of 0 from the current value of %sfp, so (b* %sfp (imm #x0)) is effectively a return

operation.

The labels .12 and .13 handle the case where the passed arguments are Scheme objects.
.12 contains a call to an “event” handler, used for various runtime purposes in Chez
Scheme. We will focus on .13. Instructions at addresses 116-124 store the passed
arguments on the Scheme stack through %sfp. Notice that 128-132 store a return

address at %sfp offset 0. A call to the procedure > occurs at 136.

Notice that at byte 152, we have an rp-header that will never be executed as code
due to the call immediately before and the return address being immediately after.
Instructions at addresses 168-176 are standard caller cleanup, since in this case we
made a non-tail call. At the end of the function, we check the return value in acO
for boolean #t, encoded as a tag, before branching back to either .10 or .11 and

resuming the same code path as the native case.
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Chapter 8

PARTIAL BYTECODE COMPILATION AND PBCHUNK

8.1 Interpreter Specialization Background

The approach to compilation taken in this thesis is a partial one. It bears some
resemblance to program specialization, and in particular, interpreter specialization,
so it is worth introducing the concept of interpreter specialization and reviewing some

existing work.

Generally speaking, program specialization applies if we have a program prog(z,y)
that operates on two (or more) inputs. Suppose we are operating in a situation
where x is fixed, i.e., * = xg. The goal of program specialization is then to create
an optimized program prog,,(y) that is equivalent to prog(z,y) but is specialized to

the known fixed input zq [31].

In the case of interpreter specialization, we have some interpreter program int(p, d)
for a bytecode language L, where p is a program to be interpreted (written in L),
and d is some unknown input to the program. If we fix p = pg, then we may con-
struct a specialized interpreter program int,, (d) = int(py, d), where int,,(d) may have

improved performance for some d.

8.1.1 Some Related Work

Interpreter Specialization may be static (ahead of time), or dynamic, based on the
actual flow of execution when an interpreter is executing a program. For an example

of dynamic specialization, JavaScript interpreters can be made to record traces of
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execution and emit type-specialized code that implements said execution in native

machine instructions [21].

Direct-threading is a form of static specialization. Simple bytecode interpreters are
generally implemented as a dispatch loop, where at each iteration an instruction is
read and control is “dispatched” to a piece of code in which the interpreter performs
the work of the instruction. Piumarta and Riccardi [34] investigate removing dispatch
overhead by direct threading, or replacing each opcode with the actual address of code

that performs the opcode.

Piumarta and Riccardi also experiment with creating “macro” instructions that are
the concatenation of the implementations for multiple bytecode instructions. Exe-
cuting a macro-instruction eliminates the overhead from dispatch and instruction
fetching, since the implementation for a macro-opcode is simply a linear sequence of
code that performs the work of the actual instructions. This yields performance of
up to 70% that of natively compiled C in some cases [34]. The creation of macro-
instructions may be performed ahead of time (statically), or dynamically based on

which commonly executed sequences of instructions appear in a target program.

Interpreter specialization is effective in a variety of contexts. Other investigations,
such as those from Thibault et al., show the use of interpreter specialization as a means
to improve the performance of a variety of languages, including bytecode interpreters

for Java, OCaml, and even a DSL for specifying networks [41].

8.1.2 Differences in our Approach

We implement the “macro-opcode” approach in this thesis. In our case, we create
macro-opcodes in an ahead-of-time fashion, where each macro-opcode is the Wasm

implementation of one or more instructions. Our approach does not modify the inter-
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preter code in any fashion; rather, the interpreter has already been created with the
ability to deviate from its normal execution path to call into pre-compiled functions
that implement macro-opcodes. We simply create a pass to generate macro-opcodes

from selected portions of bytecode.

8.2 PBChunk and its Implementation

PBChunk is a form of partial bytecode compilation that uses the macro-opcode ap-
proach. It statically compiles sections of PB bytecode into equivalent C-code that
performs the work of the relevant PB instructions. The C-code forms the imple-
mentation for macro-opcodes. PBChunk is a system designed and implemented by
Matthew Flatt, one of the core authors of the Racket compiler. As was described in
the previous chapter, PB is primarily used for bootstrapping Chez Scheme. PBChunk

is meant to provide a degree of speed up for this bootstrapping process.

PBChunk is a heavy inspiration for our work, and thus it is essential to have a working

understanding of the PBChunk approach to provide context for our own.

PBChunk is designed to operate on boot files, which have been mentioned previously.
When Chez Scheme is built for a new system, the executable form of the compiler
along with all the supporting primitives and library functions that are implemented in
Scheme, are stored in boot files. As was mentioned in Chapter 7, every Chez Scheme
program will be dynamically linked with code in the boot files at load-time, meaning

that nearly every program depends on the boot files implicitly.
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8.2.1 Boot Files

Any effort to optimize compiled code stored in boot files is likely to have a reasonably
high impact on performance, because most Scheme programs will make use of code
that originates in boot files heavily. For more examples of primitives, consider the
use of functions such as list, car, cdr, and map; arithmetic operations such as +, -,
x /. and vector operations such as vector-set! and vector-ref. Note that certain
primitives may be inlined by the compiler, but oftentimes the use of a primitive still
involves a call to a Scheme library function (consider the calls to > and + in the PB

examples from the previous chapter).

Under a system built for PB, code that exists in the Chez Scheme boot files will be
compiled to PB bytecode, meaning that a call to any primitive will involve interpreting
the code for that primitive. Thus, the idea behind PBChunk is to create a chunk or
macro-opcode for the instructions that make up a primitive, eliminating a significant

amount of interpretation overhead.

For an example of a chunked primitive, consider the function list. (list ...)
constructs a new list using a variable number of Scheme objects that are passed as

arguments. A portion of the PB-compiled form of 1ist is shown in Figure 8.2.

8.2.2 Chunk Selection

In PBChunk, chunking is done by first identifying ranges of instructions within code
objects that will become chunks. Boot files are serialized in a binary format called
FASL, and so PBChunk takes advantage of Chez Scheme’s FASL-parsing utilities to
parse the boot file and search through its contents for code objects. Note that there

may be top-level objects in the FASL file — such as vectors and hashtables — which
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0:1 1:2 2:4
| opcode [sub-index | index |

Figure 8.1: Byte-level instruction format for pbchunk instruction

are not themselves code but may contain references to code objects. Thus, the search

process is recursive.

Once code objects are identified, they are split into zero or more chunks that represent
ranges of instructions within the code object. The instructions that make up those
instruction ranges are translated into equivalent C code that performs the underlying
instructions for a chunk. The C code itself is meant to be linked with the PB-
interpreter, and thus the C code will make use of C macros and types defined by the

interpreter itself.

8.2.3 Chunk Instructions

A new instruction, pbchunk, is used to implement chunking. The instruction has a

form shown in Figure 8.1.

For each selected chunk, the first instruction in said chunk’s instruction range is
overwritten with a pbchunk instruction. Thus, the instructions within code objects
are modified to allow for chunking to occur. As a result, PBChunk produces modified

boot files in addition to generated C-code.

8.2.4 Chunk Structure

The chunks themselves take the form of C functions with the signature:

static uptr chunk_n(MACHINE_STATE ms, uptr ip, int sub_index) {...}
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where ms is a pointer to a structure that holds the PB interpreter state, seen in
Figure 8.4, ip represents the value of the instruction pointer on entry to a chunk,

and sub_index is the index of a chunklet, or a single label within the chunk.

A chunk function’s return value is the address of the next instruction to execute upon
exit from the chunk. This may be statically known when the chunk is created, or (in
the case of conditional branch instructions) the chunk code itself may determine this

based on its execution of instructions.

8.2.5 Chunk Contents

Each line within a chunk is a statement or C macro that implements the actual in-
struction in question. For example, do_pb_mov16_pb_zero_bits_pb_shift0(4, 38)
corresponds to the mov-16 instruction at address 8, and expands to the C statement:
regs[4] = (uptr)38; it is the equivalent interpreter code for moving the immediate

value of 38 into the 5th PB register, with no shift applied.

For instructions that set a flag, such cmp variants, a local flag variable is used to

hold the flag state.

8.2.6 Chunk Returns and Trampolining

For an example of when a chunk function might return, observe the bx (branch-
indirect) operation at address 0xC in Figure 8.2. Looking to the PBChunk translation
in Figure 8.3, this instruction is implemented by the macro

get_pb_bs_op_immediate_addr applied to sfp and the immediate offset 0x0; This
performs the address calculation (uptr)ms->regs[1]+0x0, where ms->regs[1] rep-

resents the virtual PB register for sfp.
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In order to perform the branch, we return this address back to the interpreter loop,
so that the value of the instruction pointer for the next iteration is set to the address
returned by this chunk. This is a form of “trampolining.” Note that the reason
trampolining is necessary in this case is because the branch target comes from a

register and could not be statically known.

8.2.7 Chunklets and Local Labels

As can be seen in Figure 8.3, constructed PB chunks make use of C labels and
associated goto statements. One reason for this is to support “chunklets”, where
each internal label in a chunk function corresponds to a chunklet, and a chunklet
corresponds to a basic block in the original PB. A sub-index then allows all the
converted basic blocks in a PB function to exist in the same PBChunk, leading to a
more efficient C representation. The chunk function must be passed the sub_index

to determine which basic block to execute.

Another extremely important reason for the local labels is to enable localized branch-
ing within a chunk. In PB, a branch to a local label within a function will be translated
to a C-level goto, with the target being an equivalent C-level label. For example,
the instruction at address 8 in Figure 8.2, (bfalse (label 10 (imm 8))), is trans-
lated into the statement if (!flag) goto label_10 in Figure 8.3. This avoids the
overhead involved with returning to the interpreter loop and re-entering the chunk

function at a different entry point.

8.2.8 Chunk Registration

Pointers to each chunk function are placed in an array of function pointers within each

generated C file. Each C file exports a registration function that copies the chunk
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.10

16:
20:
24:
28:
32:
36:
40:

11

N OO = O

0000044b
000008 cd
00260402
000001d3

00044429
fff92517
00042230
0000 bcef
00680fb1
00020156
0000bO0cft

(eq %acO (imm #x0))

(bfalse (label 10 (imm 8)))
(mov—16 %ac0 (imm #x26))
(bx %sfp (imm #x0))

(1sl %acO %acO (imm #x4))

(add %xp %ap (imm #xf{ff9))
(add %ap %ap %acO #:signal #t)
(btrue (label 17 (imm 188)))
(ld—=int64 %r15 %tc (imm #x68))
(bl %r15 %ap)

(btrue (label 17 (imm 176)))

pointers within the table into a global array. When the PB interpreter is initialized,

it calls an external function that calls all the individual chunk registration functions

Figure 8.2: Portion of PB instructions for “list”

in order to initialize the global chunk array.
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static uptr chunk_722(MACHINE_STATE ms, uptr ip, int sub_index) {
int flag;
switch (sub_index) {
case 0: ip —= 0x0; goto label_O;

case 1: ip -= 0x10; goto label_10;
case 2: ip -= 0x2C; goto label_2C;
case 3: ip -= 0x48; goto label_48;
case 4: ip -= 0x6C; goto label_6C;
case 5: ip —= 0x90; goto label_90;
case 6: default: ip -= 0xDC; goto label_DC;
}
label_O:

/* 0x0 */  do_pb_cmp_op_pb_eq_pb_immediate(4, 0); /* r4 <- 0z0 */
/* 0x4 */  if (!flag) goto label_10; /*

<~ pb_b_op_pb_fals_pb_immediate: 0x8 */

/* 0z8 */  do_pb_mov16_pb_zero_bits_pb_shift0(4, 38); /* 14 <- 0z26
——

/* 0xC */  return get_pb_bs_op_pb_immediate_addr(i, 0); /* r1 + 0z0
- *x/

label_10:

/* 0x10 */  do_pb_bin_op_pb_no_signal_pb_lsl_pb_immediate(4, 4, 4);
o Sk vy <- 14, Ox4 */

/* 0xl4 */  do_pb_bin_op_pb_no_signal_pb_add_pb_immediate(5, 2, -7);
o /* r5 <- 12, 0z-7 */

/* 0x18 */  do_pb_bin_op_pb_signal_pb_add_pb_register(2, 2, 4); /*
o TR <- 12, T4 */

/* O0ziC */  if (flag) goto label_DC; /*

-~ pb_b_op_pb_true_pb_immediate: OxzBC */

/* 0x20 */  do_pb_ld_op_pb_int64_pb_immediate(15, 0, 104); /* r15 <-
< r0, 0x68 */

/* 0x24 */  do_pb_cmp_op_pb_bl_pb_register (15, 2); /* r15 <- r2 */
/* 0x28 */ if (flag) goto label_DC; /*

— pb_b_op_pb_true_pb_immediate: 0xzBO */

Figure 8.3: PB chunk representing “list”
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typedef struct machine_state {

ptr machine_regs[pb_reg_count];

double machine_fpregs[pb_fpreg_count];

ptr machine_call_arena[pb_call_arena_size];
} machine_state;

Figure 8.4: PB interpreter state structure
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Chapter 9

WASM-PBCHUNK IMPLEMENTATION

9.1 Rationale

As has already been described, Chez Scheme’s backend interface has proven difficult
to adapt to Wasm. Semantically speaking, Wasm is rather different than other in-
struction set architectures that are already supported, and thus the interface is not

readily applicable — especially where control flow is concerned.

Guile’s Hoot project is taking the approach of building out support for WebAssembly
more directly, and the work is highly involved, given specific features of Scheme
that complicate compilation (continuations and garbage collected objects being the
primary examples) [51]. Further, we wish to avoid re-implementing parts of the
compiler in a Wasm-specific context, especially with respect to compiling features

such as tail calls and continuations.

9.1.1 A level below the backend: PBChunk Inspiration

One alternative is to go a level below Chez Scheme’s backend, and instead work with
the output of Chez Scheme directly. Taking significant inspiration from the PBChunk
approach outlined in the previous chapter, we might create a system that operates

on compiled PB, and which splits off fragments of PB into compiled Wasm chunks.

The presence of the PB interpreter allows support to be developed gradually. Any
constructs that are difficult to translate from PB into Wasm need not be included

in chunks, and can simply be executed in the interpreter. We can circumvent the
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problem of control flow almost entirely by using the interpreter as a trampoline for

branching, including only basic blocks in chunks.

A major benefit of this approach is the breadth of feature support it enables; all of
Racket’s features and its runtime — including garbage collection and delimited con-
tinuations — are already supported by PB, so by porting PB to Wasm, we essentially

have full support under Wasm.

The problem then becomes achieving reasonable performance, and this is where a

PBChunk-like system comes into play.

9.2 System Overview

At a high-level, we developed a version of PBChunk for Wasm, named Wasm-PBChunk
for the time being. The system takes as input a boot file for a Scheme program con-
taining Scheme code compiled to PB, and outputs extracted Wasm chunks. Since the
PB interpreter is written in C, the PB interpreter, along with Chez Scheme’s runtime,
can be compiled into Wasm. We can then link the Emscripten-produced Wasm with
our generated Wasm chunks, to obtain a Wasm-compatible version of Chez Scheme

that can run our specific program.

9.3 Extracting Chunks from a Boot File

The procedure for extracting chunks from an existing boot file under Wasm-PBChunk
is almost identical to the original PBChunk; we must recursively search through all
objects in the FASL file, including those that are directly listed as code, and those

that may contain references to code objects.
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(func $chunk n (export ”chunk_ {n}")
(param $ms i32)
(param $ip 132)
(result i32)
(local $flag i132)
;; code

Figure 9.1: Wasm chunk function stub

9.4 Chunk Selection

Pseudocode for the chunk selection algorithm will be given. The chunk selection
algorithm is highly similar to that of the original PBChunk, but adapted for chunking

only basic blocks and those instructions that are supported under Wasm.

Given a start index, chunk selection attempts to select some range [start;, end;| that
can be compiled into a single Wasm chunk. The chunk selection procedure shown in
Algorithm 1 demonstrates high-level pseudo-code for selecting a chunk. The cases for
processing instructions are outlined in Algorithm 2. We notably skip over rp-headers

when creating chunks, and end a chunk at any label or branch instruction.

Note that the described procedure should run in O(n) time, where n is the number of
instruction words in a code object. At each step, we are processing a single instruction,
and we process each instruction exactly once. If a chunk ends before the end of a

code object, chunk selection is simply restarted at the next instruction.

9.5 Structure of Chunks

The structure for Wasm chunks is quite similar to the C chunks in the original

PBChunk. Referring to Figure 9.1, we see a chunk stub function. The parame-
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Input: i: start search index
Input: headers: list of headers
Input: labels: list of labels
Input: len: length of code object
chunk < null;
start; < null,;
while i < len and chunk = null do
if isHeaderStart(i, first(headers)) then
if start; # null then
| chunk « (start;, 1);
else
i < i+ size(first(headers));
headers < rest(headers);
relocs < advanceRelocsPast(relocs, 1);
end
Ise if isLabel(i, first(labels)) then
if start; # null then
| chunk « (start;, i);
else
| labels < rest(labels);
end
else if ¢ > offset(first(relocs)) then
| signal error;

else
| Handle Instruction, see instruction handling cases

end

@

end
if chunk = null then
if start; # null then

| chunk < (start;, i)
else

| chunk < (i,1)
end
end

Algorithm 1: Chunk Selection Algorithm
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instr < instrs(i);
if Unsupported(instr) then
if start; # null then
| chunk < (start;, 1)
else
| 2414 Siz€instr
end
Ise if isBranch(instr) then
end; < 1 + instry.e;
if start; # null then
| chunk < (start;, end;)
else
| chunk < (i, end;)
end
Ise if isLiteral(instr) then
if start; = null then
| start; <1
end
if i@ #offset(first(relocs)) then
| signal error (relocation must follow literal);
end
relocs < rest(relocs);
14— 1+ SiZ€data
else
if start; = null then
‘ start; < 1;
end
14— 1+ insStrg,e;
end

)

)

Algorithm 2: Instruction Handling Cases
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ters $ms and $ip, which represent the machine state and current instruction pointer
value respectively, are simply encoded as 132 types; Wasm only supports a 32-bit ad-
dress space. Similarly, a chunk’s return value, which represents the next address for
the instruction pointer, is an i32. Note that chunks are explicitly exported from the
Wasm module. There is no sub-index included for simplicity; a chunk is comprised

of a single basic block at most.

A $flag local is declared for cases in which we are compiling instructions such as

comparisons that set the interpreter’s flag.

9.6 Chunk Contents

Each chunk is comprised of the Wasm implementations for the instructions in said
chunk. The core computations in many PB instructions map to Wasm fairly directly.
For example, Table 9.1 shows the Wasm equivalents for binary operations in 64-bit
PB. Similarly, PB’s various mov operations (many of which include type casts) have

direct Wasm equivalents as well, shown in Table 9.2.

That being said, significant boilerplate needs to be generated in order to actually

modify the state of the PB interpreter from within a Wasm chunk.

For an example, consider the PB instructions listed in Figure 9.2. The instructions
comprise a small basic block, the purpose of which is to check that the argument
count in acO is equal to 1, branching to an error label further along in the function if

not.

The Wasm chunk corresponding to this basic block is listed in Figure 9.3. To briefly

explain the contents: Lines 6-10 declare the $flag variable and temporary locals.
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Lines 12-29 implement the eq instruction seen at address 0 in Figure 9.2:

e Lines 12-17 are an address computation; they calculate the offset into $ms for
ac0, the 5th register. Note that in this configuration, each register is 64-bits.
Emscripten places the register array (that corresponds to the first field of the
machine state structure) at the lowest address within the memory allocated for

the structure.

e Lines 18-22 perform a load from the virtual register ac0, and store the value in
a temporary. Lines 23-25 load the constant 0x1, and sign-extend the value to

64-bits, again storing in a temporary.

e Finally, lines 26-29 compare the value loaded from acO to the constant value
stored in a temporary, using the i64.eq instruction, placing the value into the

$flag local.

Lines 31-37 implement the bfalse instruction. It is here that we can see our trampoline-

based branching strategy come into play:

e The i132.eq instruction on line 31 checks for equality with 0, given that the

branch is meant to be executed if the flag is set to false.

e The then portion of the if statement on line 32 represents the case in which
the test succeeds. In this case, we return $ip + 484, the branch target address,

as an i32.

e The else portion of the if represents the case in which we do not branch. In
this case, we return the address of the next instruction. Since this chunk is two
instructions in length, and PB instructions are 4 bytes in width, we must move
the instruction pointer forward 8 bytes from its value on entry to this chunk.

Thus, we return the address $ip + 8.
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0: 0001044b (eq %acO (imm #x1))
4: 0001dced (bfalse (label 111 (imm 476)))

Figure 9.2: Simple PB basic block. The first two instructions of a compiled
Scheme factorial function

pb64 | Wasm Equivalent
add i64.add
sub i64.sub
mul i64.mul
div i64.div
and i64.and
or i64.or
Xor i64.xor
1sl i64.shl
1sr i64.shr_u
asr 164.shr_s

Table 9.1: Binops in 64-bit PB and Wasm Equivalents

9.7 Trampolining for Branching

As can be seen in Figure 9.3, conditional branches in PB are compiled into wasm if
statements that return an address in each case. This address may be a constant offset
from $ip, or it may be loaded from a register. Unconditional branches are simply an

address computation, followed by a return.

A return instruction with the next address after the end of a chunk is added as the
last instruction in every chunk as a fallthrough, to simplify compilation. This can be

seen on line 38 in Figure 9.3.

pb64 Wasm Equivalent
mov-i-d f64.convert_ib4_s
mov-d-i i64.trunc_£f64_s

mov-i-bits-d-bits | f64.reinterpret_i64
mov-d-bits-i-bits | 164.reinterpret_£f64
mov-s—d f64.promote_£32

Table 9.2: Move operations in 64-bit PB and Wasm equivalents
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(func $chunk_ 0 (export ”"chunk_07)

(param $ms 132)
(param $ip 132)
(result i132)

$flag i132)

local $g2 i64)
local $g3 i32)
local $g0 i64)
local $gl i64)
150 14 <— Ox1
i32.const 4)
i32.const 3)
i32.shl)
local.get $ms)
i32.add)
local .set $g3)
local.get $g3)

local.set $g2)
local.get $g2)
local .set $gl)
i32.const 1)
i64 . extend_i32_s)
local.set $g0)
local.get $gl)
local . get $g0)
i64 .eq)

local .set $flag)
.4 b 476

i32.eq (local.get $flag) (i32.const 0))

(
(
(
(
(
(
(
(
(
(
(
(
(164 .load)
(
(
(
(
(
(
(
(
(
(
(
(if

(then (return
(132

(i32.

(else (return
(132

(return (i32.add

.add (local.get $ip)

const 484))))

.add (local.get $ip)
(i32.

const 8)))))

(local.get $ip)
(i32.const 8)))

Figure 9.3: Wasm chunk implementing small PB block
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9.7.1 When is trampolining necessary?

Local branching, or branching to an address within the confines of a given code
object, can certainly be implemented in Wasm without trampolining. This is accom-
plished in the C version of PBChunk by making use of C labels and goto statements.
With Wasm'’s structured control flow restriction, an algorithm such as Emscripten’s
Relooper [54] could be employed to appropriately nest basic blocks in order to em-
ulate PB’s branching semantics within a function. This approach will be discussed
more as a piece of future work, but it was not implemented for this thesis due to time

constraints.

For non-local branching — branching outside the confines of a given function — tram-
polining is likely to be necessary, short of a radical change in compilation approach.
Most non-local branching will make use of a branch or branch indirect with a target
address stored in a register. The value itself may be loaded from memory. This target
address cannot be statically compiled with the current approach, since the address

to branch to simply will not be known until runtime.

Wasm'’s only mechanism for inter-procedural control flow is a call. Assuming we
could compile entire PB functions into Wasm, it might be possible to transform
sequences of PB instructions that represent calls into native Wasm call operations
in some cases. However, this was an avenue that was not explored and was deemed

to be beyond the scope of the project.

9.8 Chunk Registration and Linking

Wasm-PBChunk performs chunk registration in a similar manner to the original, but

with some slight differences.
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(table $chunks 26 funcref)

(elem (i32.const 0) $chunk_0)
(elem (i32.const 1) $chunk_1)
(elem (i32.const 2) $chunk_2)
(elem (i32.const 3) $chunk_3)
(elem (i32.const 4) $chunk_4)
(elem (i32.const 5) $chunk_5)

Figure 9.4: A fragment of a generated table of chunk functions within
Wasm-PBChunk module

(func $wasm_pbchunk_register (export ”wasm_pbchunk_register”)
(table.set 0 (i32.const 0) (ref.func $chunk 0))
(table.set 0 (i32.const 1) (ref.func $chunk_1))
(table.set 0 (i32.const 2) (ref.func $chunk.2))
(table.set 0 (i32.const 3) (ref.func $chunk.3))
(table.set 0 (i32.const 4) (ref.func $chunk_4))
(table.set 0 (i32.const 5) (ref.func $chunk 5))

Figure 9.5: A fragment of the Wasm PBChunk registration function

Once a series of chunk functions has been generated, it must be exported such that

the PB interpreter, compiled with Emscripten, can access it.

Once generated, each chunk is placed in a Wasm table, as seen in Figure 9.4. Due to
some complications with static initialization, a Wasm registration function,
$wasm_pbchunk_register, is used to manually set each slot in the table (seen in

Figure 9.5)

Exporting the table itself from Wasm such that it was accessible within the Em-
scripten compiled PB interpreter proved tricky. Conceptually speaking, a Wasm
table is a statically declared array of function pointers. When linking Wasm with Em-
scripten compiled C code, however, Wasm tables do not directly unify with extern

function pointer arrays declared in C. This is unexpected behavior from Emscripten’s
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(func $wasm_do_jump (export "wasm_do_jump”)
(param $idx 132) (param $ms i32) (param $ip i64)
(result i64)
(164 .extend_i32_u
(call_indirect (type $_chunksig)

(local.get $ms)
(i32.wrap-i64 (local.get $ip))
(local.get $idx))))

Figure 9.6: Wrapper for performing a call from Emscripten compiled C
into a generated Wasm chunk

linker, but it is understandable, given that the linker was created to link Emscripten-

compiled code together and support may be more limited for hand-written Wasm.

To get around this behavior for now, our generated Wasm module exports another
procedure, $wasm_do_jump, seen in Figure 9.6. Given a chunk index and the parame-
ters for a chunk function, it indexes into the table and invokes the appropriate chunk

with the given parameters.

9.9 Build System Integration

It is worth providing a brief overview of how generated Wasm chunks are linked with
the existing Chez Scheme runtime (referred to as the “kernel”) in order to provide

chunking behavior.

The high level build steps are the following:

1. Create a build of Chez Scheme that targets PB. A configuration option for

targeting PB already exists.
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2. Compile a desired Scheme program to boot file form, using a PB build of Chez
Scheme. This step is needed because Wasm-PBChunk is designed to operate
on a boot file, like the original PBChunk.

3. Run the Wasm-PBChunk script to extract Wasm chunks from the program’s
boot file. Wasm-PBChunk places the generated chunks in a single separate

Wasm module, and also outputs a modified boot file.

4. Rebuild the kernel of Chez Scheme — which is written in C and includes the PB
interpreter — with Emscripten, to allow the kernel and interpreter to run in a
Wasm environment. As part of this step, we link the Wasm module containing
the generated Wasm chunks. We must also include the actual boot file code for
the Scheme program, since the boot file has been modified to contain pbchunk

instructions.

These high-level steps yield a build of Chez Scheme that is compiled to WebAssembly,
and which contains, in its kernel, a version of the PB interpreter that can run a
particular Scheme program under Wasm. This build of Scheme can be executed
using any compatible Wasm runtime, though V8 has been used exclusively for testing

thus far, both under Node.js and the Chrome Web Browser.

9.10 Current Limitations

Table 9.3 summarizes support for instructions that can currently be translated into
Wasm. Notable exceptions are FFI operations (arena-in/arena-out, stack-call), and
threading operations (lock, cas, etc.). Branch support is listed as partial, since local
branch reconstruction is still not implemented in the places where it is possible and

trampolining is instead used in those instances. As was previously mentioned, for non-
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Instruction Support (yes/no/partial)

mov* yes
mov-16* yes
binop (no signal) yes
binop (signal) yes
fp-binop yes
un-op (not) no
fp-un-op (sqrt) yes
cmp™ yes
1d* yes
st* yes

b partial
b-indirect yes

btrue partial

bfalse partial
return no
interp no
call no
adr yes
inc* no
lock no
cas no
fence no
call-arena* no
fp-call-arena* no
stack-call no

Table 9.3: Summary of instruction support for Wasm-PBChunk

local branching, trampolining is likely to be a continued necessity, so branch-indirect

is completed.
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Chapter 10

EVALUATION

The primary goal of this thesis was to take a step towards native Wasm compila-
tion for Chez Scheme, and by extension, Racket. We must then validate that this
approach is correct, and assess its performance. In particular, we wish to determine
whether generating Wasm chunks from compiled PB actually produces any noticeable

performance benefit.

10.1 Methods

We chose to utilize a subset of the Larceny Project R6RS benchmarks [30]. Larceny is
primarily a compiler research project. It has enabled research into novel compiler op-

timizations through its TwoBit compiler [9], as well as research on garbage collection

[10].

Given Larceny’s goal to be a test bed for compiler optimization, Larceny features
a large suite of benchmarks that are specifically designed to stress-test particular

features of Scheme — for example, tail calls and first-class continuations.

We would certainly expect that our Wasm-PBChunk system will eliminate the inter-
preter overhead of instruction fetching and dispatch for sections of PB code. It is also
hopefully the case that the Wasm translations of PB-compiled Scheme constructs —
such as calls, numerical operations, and continuations — provide some performance
benefits. The best way to test this is through diverse benchmarks that leverage a

variety of Scheme features.
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10.2 Benchmark Results

10.2.1 Benchmarking Suite

The “Gabriel” benchmarks, a subset of the full Larceny suite, were chosen for eval-
uation. The Gabriel benchmarks consist of 13 different Scheme programs that are
designed to stress-test different aspects of code generation, including tail calling be-
havior, continuation capture, and use of primitives. Several benchmarks have both
iterative, recursive, and continuation-based versions. They vary widely in size, from

10 lines up to over 100.

10.2.2 System Configuration

All benchmarks were performed on a MacBook Pro 2018 model, running OSX 11.4,

with an 2.2 GHz 6-Core Intel Core i7 and 16GB of memory.

The Chez Scheme sub-repository of a Racket fork from March 10, 2023 was used for

testing.

Node.js version 20.2 was used to execute the Wasm-compiled versions of Scheme.
Thus, the chosen runtime for Wasm was V8, and includes the Turbofan JIT compiler

for Wasm [43].

We tested three different configurations:

1. Native. Chez Scheme built to target x86_64, the native architecture of the host

machine.

2. NPB. PB build of Chez Scheme, running on the host machine.
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Benchmark | WPBChunk vs. WPB | WPB vs. NPB | WPBChunk vs. Native
browse 1.11 8.25 0.44
deriv 1.48 3.12 0.17
dderiv 1.34 4.32 0.20
destruc 1.25 7.00 0.33
diviter 1.64 5.43 0.36
divrec 1.21 4.29 0.21
puzzle 0.98 6.78 0.27
triangl 1.06 7.22 0.29
tak 1.22 5.56 0.28
takl 1.02 9.07 0.38
ntakl 0.96 9.02 0.36
cpstak 1.23 12.70 0.73
ctak 1.31 3.62 0.19

Table 10.1: Speedup numbers from the Gabriel benchmarks, for each de-
scribed machine configuration. X vs. Y means “Speedup of X with respect
to Y”. See Appendix for full benchmark timings

3. WPB. PB build of Chez Scheme, compiled with Emscripten and running on

Wasm

4. WPBChunk. PB Build of Chez Scheme running on Wasm, with chunking

enabled for each specific benchmarked program.

Our primary goal was to compare the WPB and WPBChunk configurations, and
it is this comparison that we will analyze in the most detail. The other configurations

are primarily for reference.

10.3 Analysis

10.3.1 Wasm PB vs. Native PB

One surprising result is the immense difference in performance between PB running

in a Wasm-compiled interpreter, and PB running in a native-compiled interpreter.
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These speedup numbers are in the second column of Table 10.1, demonstrating a 3x
speedup at minimum, and a 12x speedup at maximum. The likely reason for this is
the presence of a Wasm JIT compiler — namely, V8’s Turbofan. Turbofan performs
background re-compilation of Wasm functions, meaning that the PB interpreter loop —
one of the most-called functions in the program — is likely re-compiled many times into
a heavily optimized state [43]. The JIT may be able to perform further optimizations

on the PB interpreter code based on runtime profiling.

10.3.2 Wasm-PBChunk vs. Wasm-PB

Looking again to Table 10.1, we see moderate to significant speedups when comparing
execution time for Wasm-PB and Wasm-PBChunk. In several other cases such as
triangl, puzzle, takl, and ntakl, we see negligible speedup, or even a slight decrease

(of no more than 4 percentage points).

The largest speedup is seen in the diviter benchmark, followed by the deriv bench-
mark. Analyzing the two benchmarks, we see a common pattern: slightly longer basic
blocks that are amenable to chunking and are on heavily utilized code paths. The
diviter benchmark divides a natural number n (represented as a list of length n)
in two. It consists of a tight loop that skips over elements of the list, two at a time,
incrementing a counter at each step. Two core sections of the compiled loop are split
into chunks of approximately equal length, together totaling around 50% of the loop’s
instructions. Each of these chunks eliminates dispatch overhead for around a quarter
of the instructions in the loop. This is before even considering possibility efficiency
gains from the Wasm-PBChunk generated implementations of the instructions in each

chunk.
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The deriv benchmark is a similar case. It is not iterative and makes non-tail calls, but
two sections of the code implementing recursive cases that are likely to be commonly

hit each include a chunk of 8 instructions in length.

Comparatively speaking, the ntakl benchmark had the worst performance relative to
non-chunked PB running under Wasm (speedup of 0.96). The benchmark computes a
recursive function that operates on lists, and uses a supporting procedure, shorterp,
for comparing list lengths. shorterp is the most-called procedure in the benchmark,
as is confirmed by profiling. Looking to Figure 10.1, we see that the most-run lines,
highlighted in red, are the null? checks in the cond form. Each null? check compiles
into two PB instructions that are seen in Figure 10.2: a comparison with a constant

pointer mask 0x26 that encodes ' (), and a branch to a block that performs a return.

Based on current chunking rules, these two empty list checks would each become sep-
arate chunks, meaning that the most run section of the program (hit approximately
470 million times, according to profiling) is split into chunks with only a single in-
struction. It is not surprising that the overhead from calling into these 1-instruction
chunks is not offset by a potentially faster implementation for a single instruction.
Instead, the overhead of calling into the chunk likely imposes a performance penalty

that accumulates and accounts for the performance differential.

10.4 Takeaways

It is fairly intuitive to assume that smaller chunks are more likely to have a negligible
or even negative performance impact due to the overhead of calling the chunk, and
this is borne out in the ntakl benchmark in a fairly extreme case. The benchmark
provides an empirical basis for setting a minimum chunk size, something that we

resisted doing before analysis could be done.
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(cond ((null? y) =3i)
((null? x) Ead)

(else
(shorterp (cdr x) (cdr y)) |

Figure 10.1: Hot code in ntakl [30] benchmark, profiled with Chez Scheme

Conversely, as chunk size increases, the overhead imposed by calling into a chunk
seems to be amortized, suggesting that we should continue to increase chunk size
as much as possible. This provides a fairly compelling case for implementing local

branching within chunks, though more testing is certainly needed.

As a general rule it appears to be the case that sequences of instructions that are run
more frequently are likely to be the best candidates for chunking, but only if they

would be compiled to chunks that are sufficiently long.

10.5 Caveats

For this experiment, we performed chunking on entire programs, but notably not on
supporting boot files (unlike the original PBChunk, which would only chunk support-
ing boot files). Thus, supporting procedures such as +, car, vector-ref, and the like
did not benefit from any chunking, meaning that if test programs made heavy use of
primitives, we may not have unlocked the maximum speedup. Similarly, if chunking
were to cause a significant slowdown in primitive procedures, this also would not be
borne out in our results. That being said, even in the worst case, we observed only
a minor slowdown, so we would expect that chunking supporting boot files would be

more likely to improve the speedup numbers.
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(eq %r10 (imm #x26)) ; (null? y)
(bfalse (label 10 (imm 8)))

(mov—16 %acO (imm #x6))
(bx %sfp (imm #x0)) ; return #f
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, end

(eq %r9 (imm #x26)) ; (null? x)
(bfalse (label 11 (imm 8)))

(mov—16 %ac0 (imm #xe))
(bx %sfp (imm #x0)) ; return #t
end

Figure 10.2: PB instructions for null? checks, with chunks commented

76



Chapter 11

FUTURE WORK

In this chapter, we provide some remarks on how our approach might be extended and
improved. We also comment on the ways in which the Wasm compilation landscape
may be changing in the near future — changes that may warrant a shift in compilation

approach.

11.1 Rounding out instruction support

Referring back to Table 9.3, there are still a handful of core instructions that re-
main to be implemented. In particular, FFI and threaded instructions, which were
deemed outside the scope of this project, could feasibly be implemented under Wasm-
PBChunk. This has the potential to provide some level of speedup for PB programs

that are threaded, and PB programs that make foreign calls.

There are currently some complications involved in compiling Racket to Wasm with
full threading support, so supporting threaded instructions in PB would be predicated

on the resolution of those issues.

11.2 Enabling Local Branching

One of the most appealing directions for future work is in enabling local branching for
Wasm-PBChunk. This would bring Wasm-PBChunk much closer to feature parity
with the original PBChunk. However, the mapping between PB and Wasm labels, as

well as the strategy for compilation of PB’s local branches, would have to be properly
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dealt with. A transformation such as Emscripten’s Relooper [54] would need to be
used in order to nest generated Wasm basic blocks in such a way that the original PB

branching semantics could be emulated. This is likely to be doable, but is non-trivial.

If local branching were enabled, this could allow for a significant speedup. Chunks
could be made much longer, and thus we would further amortize the overhead imposed

by calling chunks and trampolining back to the interpreter loop.

11.3 Associated Optimizations

11.3.1 Lazy Register Writeback

If local branching were enabled, this would allow chunks to encompass large sections
of PB functions. As a result, many virtual registers (stored in the PB interpreter’s
memory) would be written to and read again within the same chunk. Instead of
writing and reading virtual registers from PB’s interpeter state, we could instead
create locals for every live register in a chunk and lazily “write back” the locals to the
underlying interpreter state only when returning to the interpreter loop (at the end
of a chunk). The use of Wasm locals for registers might provide a hint to the Wasm
JIT to allocate said locals in native registers, providing a 1-1 mapping between PB
and native registers when executing a procedure. However, experimentation would

be needed to see if this would be the case.
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11.4 Cross-procedure branching

As was previously mentioned, trampolining is likely to be necessary to implement
cross-procedure (non-local) branching for the foreseeable future. This is because the

addresses involved are often relocated, and may not be statically known.

However, assuming we are able to create chunks that encompass entire procedures,
we may be able to eliminate the trampolining in some cases. Even if the procedure
address cannot be known until load time, we could potentially determine whether
a code object calls other procedures that may be compiled to Wasm already by
inspecting the relocation information attached to a code object. If a code object does
contain relocated procedure addresses, we might attempt to translate the relocation
loading instructions, along with the following branch, into a Wasm call to a chunked

function. There would be significant details to work out here, however.

11.5 Utilizing Upcoming Wasm Features

Numerous Wasm features are likely to change the landscape for compilers targeting
Wasm. In particular, Wasm’s upcoming GC proposal [49] may well land later this
year. This would provide Wasm-level support for heap allocated, garbage collected
structures, and the in-engine GC would provide inter-operation with the existing

JavaScript heap.

Two tail call instructions — return_call, and return_call_indirect — are slated
for addition to Wasm as well. These instructions would have the familiar semantics of

" re-using the existing stack frame for a procedure. In effect, tail call

a “call by jump,’
support for Wasm would make it far easier to emulate Chez Scheme’s execution model,

which uses “call by jump” almost exclusively. This is also Guile’s Wasm compilation
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approach — performing all calls via a tail-call, and maintaining a separate virtualized

stack that can be sliced into pieces to implement continuation capture.

Utilizing these new native Wasm capabilities may in fact prove to be a more per-
formant strategy, particularly for garbage collection, as the overhead of compiling
the existing collector with Emscripten would be removed. Further, it would be a
more “Wasm-native” approach and may perhaps allow for better inter-operation with

JavaScript and other code running in the same environment.
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Chapter 12

CONCLUSION

In this thesis, we present a new approach to the problem of Racket-to-Wasm com-
pilation. First, we seek to describe the fundamental execution model behind Chez
Scheme’s generated code, an understanding of which is crucial to conceptualize the

difficulties in porting the system to run under WebAssembly.

We then reduce the problem of compiling the full Racket language into Wasm to
the problem of compiling an interpreter for the PB bytecode to Wasm and partially

compiling sections of PB programs to Wasm chunks ahead of time.

This reduces the complexity of the problem dramatically, as the PB bytecode and in-
terpreter, combined with the existing runtime system (both written in C) already
provide for the full functionality of Chez Scheme, and by extension most of the
Racket language. Further, we can already run this combined system under Wasm
by compiling it with Emscripten, and so the challenge mostly comes from improving
performance. The PB semantics are far easier to translate to WebAssembly, and the
execution of any operations for which translation is more difficult can be left to the

PB interpreter for the time being.

We evaluate our system using standard benchmarks, and show that it is indeed effec-
tive — both in its ability to run a variety of test programs, and in its performance, as

compared to a baseline with no extra bytecode compilation.

We believe we have taken a unique approach in developing our solution to this prob-
lem; we are performing partial bytecode compilation with the end goal of building

a PB compiler that targets Wasm and sits at a level below the existing Racket im-
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plementation. Our development process is incremental in that the presence of the
interpreter allows us to develop feature support more gradually. For example, the
presence of the interpreter allowed us to focus only on compiling basic blocks to

WebAssembly, removing the complexity involved in handling calls and branching.

Our work represents a promising, fairly feature-complete effort to bring Racket sup-
port for Wasm, and we hope that our approach may be informative for similar projects

that are hoping to add Wasm support.
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Table A.1: Full execution timings for Gabriel benchmarks.

mm:ss.0

Benchmark | WPBChunk | WPB NPB | Native
browse 00:18:00 00:19.8 | 02:44.8 | 00:07.6
deriv 00:29.3 00:43.5 | 02:14.5 | 00:05.0
dderiv 00:44.4 00:59.4 | 04:15.2 | 00:08.9
destruc 00:11.7 00:14.7 | 01:44.6 | 00:04.4
diviter 00:28.1 00:45.7 | 04:10.3 | 00:09.5
divrec 00:42.1 00:51.3 | 03:39.5 | 00:08.9
puzzle 00:54.7 00:54.2 | 06:05.5 | 00:15.2
triangl 01:09.8 01:14.2 | 08:54.0 | 00:19.6
tak 00:31.6 00:39.0 | 03:37.2 | 00:08.8
takl 00:53.1 00:53.9 | 08:09.9 | 00:19.8
ntakl 00:55.4 00:53.4 | 07:57.9 | 00:19.8
cpstak 00:22.0 00:27.0 | 05:43.1 | 00:15.8
ctak 00:15.9 00:21.4 | 01:15.9 | 00:03.3
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