
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 5, NO. 4, AUGUST 2001 349

Grammatical Evolution
Michael O’Neill, Student Member, IEEE,and Conor Ryan

Abstract—We present grammatical evolution, an evolutionary
algorithm that can evolve complete programs in an arbitrary lan-
guage using a variable-length binary string. The binary genome de-
termines which production rules in a Backus–Naur form grammar
definition are used in a genotype-to-phenotype mapping process to
a program. We demonstrate how expressions and programs of ar-
bitrary complexity may be evolved and compare its performance
to genetic programming.

Index Terms—Automatic programming, Backus–Naur form, de-
generate code, evolutionary algorithms, neutral networks.

I. INTRODUCTION

E VOLUTIONARY algorithms have been used with much
success for the automatic generation of programs. In

particular, genetic programming (GP) has enjoyed consider-
able popularity and widespread use [14]–[16]. GP originally
employed Lisp as its target language. However, many exper-
imenters generate a home-grown language specific to their
particular problem.

Unlike GP, grammatical evolution (GE) does not perform the
evolutionary process on the actual programs, but rather on vari-
able-length binary strings. A mapping process is employed to
generate programs in any language by using the binary strings to
select production rules in a Backus–Naur form (BNF) grammar
definition. The result is the construction of a syntactically cor-
rect program from a binary string which can then be evaluated
by a fitness function.

As noted in [1] and [12], a mapping process and its subse-
quent separation of search and solution spaces can result in ben-
efits such as the unconstrained search of the genotype while
still ensuring validity/legality of the program’s output. For a
discussion on various methods of generating legal phenotypes
from a genotype, see [37]. Another potential benefit of such a
morphogenic process is that genetic diversity may be enhanced
based on the neutral theory of evolution [13], which states that
most mutations driving the evolutionary process are neutral with
respect to the phenotype; that is, a mutation may have no effect
on the phenotypic fitness of an individual. This phenomenon
is facilitated in this system by the use of a degenerate genetic
code, which is observed in biological genetic systems. The de-
generate code facilitates the occurrence of neutral mutations, a
consequence of which is that various genotypes can represent
the same phenotype, thus facilitating the maintenance of genetic
diversity within a population.

Manuscript received August 30, 1999; revised March 9, 2000 and November
13, 2000.

The authors are with the Department of Computer Science and Information
Systems, University of Limerick, Limerick, Ireland (e-mail: michael.oneill@
ul.ie; conor.ryan@ul.ie).

Publisher Item Identifier S 1089-778X(01)04278-3.

This paper serves as an introduction to GE and the system’s
unique features, namely, the degenerate genetic code and wrap-
ping.

II. BACKGROUND

GE is not the first instance in which grammars have been
used with evolutionary approaches to automatic programming.
A number of other attempts using grammars with GP have been
made [5], [7], [10], [12], [24], [33], [36] largely to overcome
the so-called “closure” problem, the generation and preservation
of valid programs. As well as examining the closure problem,
Whigham [33] used grammars as a method to introduce bias
into the evolutionary process [34], [35]. This is achieved by bi-
asing the individuals in generation zero and by modifying the
grammars during runs. As in Wong and Leung [36] and Horner
[10], derivation trees are used as the genotype representation
by Whigham. The derivation trees state exactly which produc-
tion rules are to be used at any time during the mapping process
onto the phenotype. In [10], a great deal of effort is put into gen-
erating complete derivation trees for the initial generation and
genetic operators must be designed to maintain closure of the
generated programs. Paterson [24] and Freeman [5] attempted
to overcome the problem of generating the initial generation by
introducing a repair mechanism that used default values in the
case that a nonterminal was left without a terminal having been
specified. Each uses fixed-length integer arrays as the genotype
representation, where each integer represents a production rule
from the BNF. When rules cannot be applied in these systems,
they are ignored, which can result in a proliferation of introns.
Keller and Banzhaf [12] use a repair mechanism of a different
sort, whereby illegal terminal symbols in the generated code are
replaced with a legal terminal according to an LALR grammar.
Each terminal symbol is represented by a unique binary code,
an illegal symbol is replaced by the legal symbol whose code is
closest by hamming distance. This system also uses fixed-length
genomes, in this case with binary coding.

GE presents a unique way of using grammars in the process of
automatic programming. Variable-length binary string genomes
are used with each codon representing an integer value where
codons are consecutive groups of 8 bits. The integer values are
used in a mapping function to select an appropriate produc-
tion rule from the BNF definition, the numbers generated al-
ways representing one of the rules that can be used at that time.
GE does not suffer from the problem of having to ignore codon
integer values because it does not generate illegal values. The
issue of ensuring a complete mapping of an individual onto a
program comprised exclusively of terminals is partly resolved
using a novel technique to evolutionary algorithms (EAs) called
wrapping. This technique draws inspiration from theoverlap-
ping genesphenomenon exhibited by many bacteria, viruses,

1089–778X/01$10.00 ©2001 IEEE

350 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 5, NO. 4, AUGUST 2001

and mitochondria that enables them to reuse the same genetic
material in the expression of different genes [3].

GE, then, is a system that employs a robust new mapping
process, the end result of which is the ability to produce code
in any language from a simple binary string. At present, the
search element of the system is carried out by an EA, although
conceivably any search method with the ability to operate over
variable-length binary strings could be employed. In particular,
future advances in the field of EAs can be easily incorporated
into this system due to the program representation.

A. Backus–Naur Form

BNF is a notation for expressing the grammar of a language
in the form of production rules [20]. BNF grammars consist of

, which are items that can appear in the language,
e.g., , , etc., and , which can be expanded
into one or more terminals and nonterminals. A grammar can
be represented by the tuple , where is the set of
nonterminals, the set of terminals, a set of production rules
that maps the elements of to , and is a start symbol that
is a member of . When there are a number of productions that
can be applied to one particular, the choice is delimited with
the symbol.

Below is an example BNF, where

and can be represented as

(1)

-

(2)

(3)
(4)

.

Unlike the approach in [14], there is no distinction made at
this stage between functions (operators in this sense) and ter-
minals (variables in this example). However, this distinction is
more of an implementation detail than a design issue. Whigham
[35] also noted the possible confusion with terminology and
used the terms GPFunctions and GPTerminals for clarity. We
use the term terminals with its usual meaning in grammars.

For the above BNF, Table I summarizes the production rules
and the number of choices associated with each.

In GE, the BNF definition is used to describe the output lan-
guage to be produced by the system, i.e., the compilable code
produced will consist of elements of the terminal set. As the
BNF is a plug-in component of the system, it means that GE

TABLE I
NUMBER OF CHOICESAVAILABLE FROM EACH PRODUCTIONRULE

can produce code in any language thereby giving the system a
unique flexibility.

III. B IOLOGICAL APPROACH

The GE system is inspired largely by the biological process of
generating a protein from the genetic material of an organizm.
Proteins are fundamental in the proper development and oper-
ation of living organizms and are responsible for traits such as
eye color and height [3].

The genetic material [usually deoxyribonucleic acid (DNA)]
contains the information required to produce specific proteins
at different points along the molecule. For simplicity, consider
DNA to be a string of four building blocks called nucleotides
named A, T, G, and C for adenine, tyrosine, guanine, and cy-
tosine, respectively. Groups of three nucleotides, called codons,
are used to specify the building blocks of proteins. These pro-
tein building blocks are known as amino acids and the sequence
of these amino acids in a protein is determined by the sequence
of codons on the DNA strand. The sequence of amino acids is
very important as it plays a large part in determining the final
three-dimensional structure of the protein, which in turn has a
role to play in determining its functional properties.

In order to generate a protein from the sequence of
nucleotides in the DNA, the nucleotide sequence is first tran-
scribed into a slightly different format, that being a sequence
of elements on a molecule known as ribonucleic acid (RNA).
Codons within the RNA molecule are then translated to deter-
mine the sequence of amino acids that are contained within the
protein molecule.

The result of the expression of the genetic material as proteins
in conjunction with environmental factors is the phenotype. In
GE, the phenotype is a computer program that is generated from
the genetic material (the genotype) by a process termed a geno-
type-phenotype mapping. This is unlike the standard method of
generating a solution (a program in the case of GE) directly from
an individual in an EA by explicitly encoding the solution within
the genetic material. Instead, a many-to-one mapping process is
employed within which the robustness of the GE system lies.

Fig. 1 compares the mapping process employed in both GE
and biological organizms.

IV. GRAMMATICAL EVOLUTION

When tackling a problem with GE, a suitable BNF definition
must first be decided upon. The BNF can be either the specifica-
tion of an entire language or, perhaps more usefully, a subset of
a language geared toward the problem at hand. Complete BNFs
are freely available for languages such as C and these can easily
be plugged in to GE.

O’NEILL AND RYAN: GRAMMATICAL EVOLUTION 351

Fig. 1. Comparison between the GE system and a biological genetic system.
Binary string of GE being equivalent to the double helix of DNA, each guiding
the formation of the phenotype. In the case of GE, this occurs via the application
of production rules to generate the terminals of the compilable program and
in the biological case, directing the formation of the phenotypic protein by
determining the order and type of protein subcomponents (amino acids) that
are joined together.

A. Mapping Process

The genotype is used to map the start symbol onto terminals
by reading codons of 8 bits to generate a corresponding integer
value from which an appropriate production rule is selected by
using the following mapping function:

rule (codon integer value)

(number of rules for the current nonterminal).

Considering the following rule, i.e., given the nonterminal,
there are four production rules to select from:

(2)

.

If we assume the codon being read produces the integer 6,
then

(1)

would select rule (2) /. Each time a production rule has to be
selected to map from a nonterminal, another codon is read. In
this way, the system traverses the genome.

During the genotype-to-phenotype mapping process it is
possible for individuals to run out of codons and in this case,
we wrap the individual and reuse the codons. This is quite an
unusual approach in EAs as it is entirely possible for certain
codons to be used two or more times. This technique of wrap-
ping the individual draws inspiration from the gene-overlapping
phenomenon, which has been observed in many organizms [3].

In GE, each time the same codon is expressed, it will always
generate the same integer value, but depending on the current
nonterminal to which it is being applied, it may result in the
selection of a different production rule. What is crucial, how-
ever, is that each time a particular individual is mapped from its
genotype to its phenotype, the same output is generated. This
results because the same choices are made each time. It is pos-
sible that an incomplete mapping could occur even after several
wrapping events and in this case, the individual in question is
given the lowest possible fitness value. The selection and re-
placement mechanisms then operate accordingly to increase the
likelihood that this individual is removed from the population.

An incomplete mapping could arise if the integer values ex-
pressed by the genotype were applying the same production
rules over and over. For example, consider an individual with
three codons, all of which specify rule 0 from below

(1)

-
.

Even after wrapping, the mapping process would
be incomplete and would carry on indefinitely unless
stopped. This occurs because the nonterminal
is being mapped indefinitely by production rule 0, i.e.,
it becomes .Therefore, the left-
most after each application of a production
would itself be mapped to a , re-
sulting in an expression continually growing as follows:

, etc. Such
an individual is dubbed “invalid” as it will never undergo a
complete mapping to a set of terminals.

To reduce the number of invalid individuals being passed
from generation to generation, a steady-state replacement mech-
anism is employed. One consequence of the use of a steady-state
method is its tendency to maintain fit individuals at the expense
of less fit and, in particular, invalid individuals.

B. Example Individual

Consider the individual in Fig. 2. These numbers will be used
to look up Table I, which describes the BNF grammar given in
Section II-A.

Concentrating on the start symbol , we can see that
there are four productions to choose from. To make this choice,
we read the first codon from the chromosome and use it to gen-
erate a number. This number will then be used to decide which
production rule to use according to (1) in Section IV-A. Thus,
we have , meaning we must take the zeroth
production so that is now replaced with

Notice that if this individual is subsequently wrapped, each
codon will always result in the same integer value, but de-
pending on the number of choices for the current nonterminal,
a different rule number could be selected. In this way, although

352 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 5, NO. 4, AUGUST 2001

Fig. 2. Example individual expressed as integers. Integer values are generated by converting the 8-bit binary number that is each codon into its corresponding
integer value.

we have the same codon integer value, it could result in a
different physical trait.

Continuing with the first , i.e., always starting from
the leftmost nonterminal, a similar choice must be made by
reading the next codon value (240) and again using the given
formula we get , i.e., rule (0). The leftmost

will now be replaced with to give

Again, we have the same choice for the first by reading
the next codon value 220, the result being the application of rule
(0) to give

Now, the leftmost will be determined by the codon
value 203 that gives us rule (3), which is becomes

. The next codon then determines what value ,
which has two possible production rules, shall take. This is

, i.e., rule (1), which turns out to be 1.0. We
now have the following:

The next codon will determine what will become, so we
have , which gives a -. The next
has then to be expanded using the codon value 202, that is

. So, we now have

-

There can only be one outcome for a - , that being Sin.
Therefore, no decision has to be made and so no codon is read.
The next is then expanded by the value
, which is rule (3) or . Its value is then determined by

, rule (0), and the resulting expression is

The mapping continues until eventually we are left with the fol-
lowing expression:

Notice how all of the codons were required in this case; had there
been any extra codons, they would have been simply ignored.

C. Genetic Code Degeneracy

Given an 8-bit binary number, each codon in GE can repre-
sent 256 distinct integer values, although many of these integer

Fig. 3. Genetic code degeneracy.

values can represent the same production rule. Taking produc-
tion rule 2 in Section II-A as an example, if the current codon
value were 8, then would select rule (0) . The
same rule would be chosen if the codon value were 4, 12, 16,
etc.

A similar phenomenon can be observed in the genetic code
of biological organizms, referred to asdegenerate genetic code
[3]. There are , i.e., 64, unique combinations of nucleotides in
a codon, 61 of these coding for a specific amino acid, the other
three being special codons that delimit the start and end of genes
on the DNA. On average, there are three codons for every amino
acid, i.e., more than one codon can represent the same amino
acid, and it has been observed that the first two nucleotides in the
codon are often sufficient to specify a particular amino acid. The
value of the nucleotide at the third position is often irrelevant.
Code degeneracy has interesting implications when it comes to
mutation effects. A mutation at the third codon position can
often produce what is called aneutral mutation, meaning that
the amino acid specified will be the same as the one before the
mutation event due to the flexibility at the third codon position.
With respect to GE, this means that subtle changes in the search
space (genotype) may have no effect on the solution space (phe-
notype), which could result in the maintenance of genotypic di-
versity throughout a run of the system as different genotypes can
represent the same phenotype. It may also preserve valid indi-
viduals because the neutral mutations provide a buffering ef-
fect against destructive mutation events. Evidence to this effect
has been presented in [23]. More recently, advantages of neu-
trality in the evolution of digital circuits and another GP variant
has been discussed [19], [32]. Fig. 3 shows that in the genetic
code of biological organizms the nucleotide at position three of
the codon is independent of the amino acid produced (valine).

O’NEILL AND RYAN: GRAMMATICAL EVOLUTION 353

Similarly with GE, it can be seen in the given example that a
single bit mutation has no effect on the rule used in this case, i.e.,

,
the zeroth ruleline. Note, however, if the number of choices in
the example was uneven, e.g., three, a single bit mutation would
change the rule used.

Kimura’s neutral theory of evolution [13] suggests that it is
these neutral mutations that are responsible for the genetic di-
versity that has been observed in natural populations, a phenom-
enon that has been exhibited within GE.

D. Evolutionary Algorithm

As the population being evolved comprises simple binary
strings, we do not have to employ any special crossover or mu-
tation operators and an unconstrained search is performed on
these strings due to the genotype-to-phenotype mapping process
that will generate syntactically correct individuals.

The EA adopted in this case is a variable-length genetic algo-
rithm. Individual initialization is achieved by randomly gener-
ating variable-length binary strings within a prespecified range
of codons. For all experiments conducted in this paper, we use
the initialization range of ten codons, where a codon is a group
of 8 bits.

As well as the standard genetic operators of mutation (point)
and crossover (one-point), we adopt a codon duplication op-
erator. Duplication involves randomly selecting a number of
codons to duplicate and the starting position of the first codon
in this set. The duplicated codons are placed at the end of the
chromosome.

The GE component of the system, i.e., the part that carries
out the mapping from binary string to the output code, could
conceivably be plugged in to the fitness function of any EA. The
result of this is that GE can benefit from the latest advances in
EA research. For example, we are currently investigating the use
of “competent GAs,” which have been shown to have superior
scaling properties to the simple GA [6], [8], [9], [11], [25], [31].

V. AUTOMATIC GENERATION OFEXPRESSIONS ANDFUNCTIONS

We now describe how GE was applied to three problem do-
mains, namely, symbolic regression, the Santa Fe ant trail, and
symbolic integration, to illustrate that GE can produce com-
pilable code. These problems are deliberately diverse. In the
symbolic regression problem, a simple one-line expression is
evolved, whereas in the Santa Fe trail problem, a multiline func-
tion including branch statements is required. A brief description
of each problem domain used now follows.

A. Symbolic Regression

Symbolic regression problems involve finding some mathe-
matical expression in symbolic form that represents a given set
of input and output pairs. The aim is to determine the function
that maps the input pairs onto the output pairs. The particular
function examined is

with the input values in the range .

The grammar used in this problem is given below

and can be represented as

(1)

-

(2)

(3) -

(4)
.

The production rules for are similar to those given
earlier in Section II-A, with the terminal operator set also in-
cluding , , and .

We adopt a style similar to [14] of summarizing information
using a modified version of a tableau (see Table II). Notice how
our terminal operands and terminal operators are analogous to
GPTerminals and GPfunctions, respectively.

The fitness for this problem is given by the sum, taken over
20 fitness cases, of the error between the evolved and target
functions.

B. Santa Fe Ant Trail

The Santa Fe ant trail is a standard problem in the area of
GP and can be considered a deceptive planning problem with
many local and global optima [18]. The objective is to find a
computer program to control an artificial ant so that it can find
all 89 pieces of food located on a discontinuous trail within a
specified number of time steps, the trail being located on a 32
by 32 toroidal grid. The ant can only turn left, right, move one
square forward, and may also look ahead one square in the di-
rection it is facing to determine if that square contains a piece of
food. All actions, with the exception of looking ahead for food,
take one time step to execute. The ant starts in the top left-hand
corner of the grid facing the first piece of food on the trail. The
grammar used in this problem is different to the one given ear-
lier, as with this problem we wish to produce a multiline func-
tion. The grammar used is given below

354 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 5, NO. 4, AUGUST 2001

TABLE II
SYMBOLIC REGRESSIONTABLEAU

TABLE III
GRAMMATICAL EVOLUTION TABLEAU FOR THE SANTA FE TRAIL

and can be represented as

(1)

(2)
(3) -

(4) -

(5)

.

Note that it is the rules for the nonterminal that are
responsible for the production of multiline code. A tableau de-
scribing this problem can be seen in Table III.

C. Symbolic Integration

Symbolic integration involves finding a function that is the in-
tegral of the given curve. Similarly to symbolic regression, the

system is given a set of input and output pairs and must deter-
mine the function that maps one onto the other. The particular
function examined was

with the input values in the range and the target inte-
gral curve being

We reduce the problem to symbolic regression by integrating
the function examined and performing symbolic regression on
the target integral curve. The fitness for this problem is given by
the sum, taken over 20 fitness cases, of the absolute value of the
difference between the individual genetically produced function

at the domain point and the value of the numerical
integral .

The grammar used for this problem is the same as for the
symbolic regression problem given in Section V-A and a tableau
is given in Table IV.

O’NEILL AND RYAN: GRAMMATICAL EVOLUTION 355

TABLE IV
SYMBOLIC INTEGRATION TABLEAU

D. Results

GE was successful in finding correct solutions to all of the
problems described here, some results of which have been re-
ported in [21]. A brief overview of these results is given below.

1) Symbolic Integration:GE successfully found the target
integral function , illustrating that useful ex-
pressions could be generated by the system. A cumulative fre-
quency measure of success over 100 runs can be seen in Fig. 4.
The same problem was tackled using GP and a cumulative fre-
quency of success for 100 runs can be seen in Fig. 4. As can be
seen, GE outperforms GP on this problem from around the tenth
generation.

2) Santa Fe Ant Trail:GE was successful at finding a solu-
tion to this case of the Santa Fe trail, demonstrating that GE can
generate multiline code by using a simple modification to the
grammar definition. An example solution produced by GE is

This solution is executed in a loop until the number of time
steps allowed is reached. A cumulative frequency measure of
success over 100 runs of GE can be seen in Fig. 5 along with a
cumulative frequency measure of success for GP. The left side
of this figure shows the performance of the GP system, which
incorporated solution length in the fitness measure as well as
the number of pieces of food picked up. The performance of the
two systems is comparable in this case with GP slightly outper-
forming GE over the first 30 generations.

In order to see how the GP system would perform without the
solution length as a measure of fitness, we ran 100 more runs
of the GP system removing the solution length measure. We felt
that using solution length as a measure of fitness required a prior
knowledge of the solution’s length and, therefore, gave an un-
fair advantage, as GE did not use such a measure. The right-hand
side of Fig. 5 shows a comparison of the cumulative frequency
measure of success for these results with the results produced by
GE. As can be seen from the figure, the performance of the GP
system was compromised and as a result GE outperformed GP.

3) Symbolic Regression:GE successfully found the
target function. A cumulative frequency

measure of success over 100 runs can be seen in Fig. 4 along
with a similar measure for GP and in this case, GP outperforms
GE. When comparing GE to GP, it is important to note how the
initial generation is formed in each system. In the case of the
GP system, a ramped half-and-half generation mechanism is
used, creating a range of individuals of varying depths, whereas
with GE the generation is totally random. Also, every individual
in the initial population is engineered to be unique in the GP
system, whereas with GE this is not the case. In the case of
this problem, we feel that the generation strategy for the initial
generation is providing GP with an advantage due to the regular
nature of the solution. This is supported by the fact that on the
symbolic integration problem, the solution does not have the
same regularity as is the case here. It can be seen from the results
that over each of the problem domains compared, GE is more
consistent at finding solutions throughout a run and this, we
feel, provides GE with an advantage in terms of generalizing to
the different problem domains.

VI. CONCLUSION

GE is a system that can produce code in any language with
arbitrary complexity. The only inputs are a BNF definition for
the genotype-to-phenotype mapping process and a fitness func-
tion.

GE has been shown to be successful across a range of problem
domains, including symbolic integration, symbolic regression,
and the Santa Fe trail, and of being capable of producing consis-

356 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 5, NO. 4, AUGUST 2001

(a)

(b)

Fig. 4. Cumulative frequency of success measures of GE versus GP on the
(a) symbolic integration and (b) symbolic regression problems.

tent results across these domains. Results reported here have
shown that GE outperforms GP on two of the three problem
domains compared.

The problems tackled in this paper were used as proof of
concept, the concept being the evolution of compilable com-
puter programs using GE. In the event of tackling more com-
plex problem domains, the choice of grammars may not be as
obvious. Typically, one could strive to use the grammar as a
means of incorporating domain knowledge into the system by

(a)

(b)

Fig. 5. Cumulative frequency of success measures of GE versus GP on the
Santa Fe trail problem. (a) Result when GP uses a solution length constraint
in the fitness function (GE has no such measure). (b) Result when the solution
length constraint is removed from GP.

using bias in the form the output programs could take or in the
terminals that will be used. In many cases, one would probably
know what constructs might be useful for a particular problem.
In the event that the user had no idea of the format a solution
may take, one could easily use a larger subset of a languages
BNF or even the BNF for the entire language. Future work will
include an investigation into the time to evolve solutions given
such rich terminal sets.

O’NEILL AND RYAN: GRAMMATICAL EVOLUTION 357

Overall, GE is a biologically plausible EA that has been shown
to be a robust approach to the automatic generation of computer
programs. GE benefits from a unique mapping process that sepa-
rates the search and solution spaces, allowing an unconstrained
evolutionary search to be performed on simple variable-length
binary strings, as well the use of a degenerate genetic code.
This separation permits one to use the GE mapping process in
conjunction with any search algorithm that operates on binary
strings. Specifically, this allows one to take advantage of the
advances being made with genetic algorithms, for example, the
advent of competent genetic algorithms that have demonstrated
superior scaling properties to the simple GA.

The source code for GE is freely available.1

ACKNOWLEDGMENT

The authors would like to thank D. Fogel and the anonymous
referees for their helpful comments.

REFERENCES

[1] W. Banzhaf, “Genotype-Phenotype Mapping and Neutral Variation—A
case study in Genetic Programming,” inParallel Problem Solving
from Nature—PPSN III, Y. Davidor, H.-P. Schwefel, and R. Männer,
Eds. Berlin, Germany: Springer-Verlag, 1994, vol. 866, Lecture Notes
in Computer Science, pp. 322–332.

[2] K. A. De Jong and S. Jayshree, “Generation Gaps Revisited,” in
Foundations of Genetic Algorithms 2, D. Whitley, Ed. San Mateo,
CA: Morgan Kaufmann, 1992, pp. 19–28.

[3] G. D. Elseth and K. D. Baumgardner,Principles of Modern Ge-
netics. St. Paul, MN: West, 1995.

[4] A. Fraser and T. Weinbrenner,The Genetic Programming Kernel Version
0.5.2, 1992.

[5] J. J. Freeman, “A Linear Representation for GP using Context Free
Grammars,” inGenetic Programming 1998: Proceedings of the 3rd An-
nual Conference, J. R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M.
Dorigo, D. B. Fogel, M. H. Garzon, D. E. Goldberg, H. Iba, and R. L.
Riolo, Eds. Cambridge, MA: MIT Press, 1998, pp. 72–77.

[6] D. E. Goldberg, B. Korb, and K. Deb, “Messy genetic algorithms: mo-
tivation, analysis, and first results,”Complex Syst., vol. 3, no. 5, pp.
493–530, Sept. 1989.

[7] F. Gruau, “Neural Network synthesis using cellular encoding and the
genetic algorithm,” Ph.D. dissertation, Centre d’etude nucleaire de
Grenoble, Grenoble, France, 1994.

[8] G. R. Harik and D. E. Goldberg, “Learning Linkage,” inFoundations of
Genetic Algorithms 4, R. Belew and M. D. Vose, Eds. San Mateo, CA:
Morgan Kaufmann, 1997, pp. 247–262.

[9] G. R. Harik, “Linkage learning via probabilistic modeling in the ECGA,”
Univ. Illinois, Urbana-Champaign, Urbana, IL, Tech. Rep. 99010, 1999.

[10] H. Horner, “A C++ Class Library for Genetic Programming: The Vienna
University of Economics Genetic Programming Kernel Release 1.0, Op-
erating Instruction,” Vienna University of Economics, Vienna, Austria,
1996.

[11] H. Kargupta, “Revisiting the GEMGA: Scalable evolutionary op-
timization through linkage learning,” inProceedings of the IEEE
International Conference on Evolutionary Computation. Piscataway,
NJ: IEEE Press, 1998, pp. 603–608.

[12] R. Keller and W. Banzhaf, “GP using mutation, reproduction and geno-
type-phenotype mapping from linear binary genomes into linear LALR
phenotypes,” inGenetic Programming 1996: Proceedings of the 1st An-
nual Conference, J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L.
Riolo, Eds. Cambridge, MA: MIT Press, 1996, pp. 116–122.

[13] M. Kimura, The Neutral Theory of Molecular Evolution. Cambridge,
U.K.: Cambridge Univ. Press, 1983.

[14] J. R. Koza,Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, MA: MIT Press, 1992.

[15] , Genetic Programming II: Automatic Discovery of Reusable Pro-
grams. Cambridge, MA: MIT Press, 1994.

[16] , Genetic Programming III: Darwinian Invention and Problem
Solving. San Mateo, CA: Morgan Kaufmann, 1999.

1www.grammatical-evolution.org

[17] W. Langdon,Genetic Programming and Data Structures. Norwell,
MA: Kluwer, 1998.

[18] W. Langdon and R. Poli, “Why Ants Are Hard,” inGenetic Program-
ming 1998: Proceedings of the 3rd Annual Conference, J. R. Koza, W.
Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon,
D. E. Goldberg, H. Iba, and R. L. Riolo, Eds. Cambridge, MA: MIT
Press, 1998, pp. 193–201.

[19] J. F. Miller and P. Thomson, “Cartesian Genetic Programming,” inEu-
roGP 2000: Proceedings of the Third European Conference on Genetic
Programming, R. Poli, W. Banzhaf, W. B. Langdon, J. Miller, P. Nordin,
and T. C. Fogarty, Eds. Berlin, Germany: Springer-Verlag, 2000, pp.
121–132.

[20] P. Naur, “Revised report on the algorithmic language ALGOL 60,”
Commun. ACM, vol. 6, no. 1, pp. 1–17, Jan. 1963.

[21] M. O’Neill and C. Ryan, “Evolving Multi-line Compilable C Pro-
grams,” inProceedings of the Second European Workshop on Genetic
1999. Berlin, Germany: Springer-Verlag, 1999, vol. 1598, Lecture
Notes in Computer Science, pp. 83–92.

[22] , “Under the Hood of Grammatical Evolution,” inGECCO ’99:
Proceedings of the Genetic and Evolutionary Computation Conference
1999, W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar,
M. Jakiela, and R. E. Smith, Eds. San Mateo, CA: Morgan Kaufmann,
1999, vol. 2, pp. 1143–1148.

[23] , “Genetic code degeneracy: implications for grammatical evo-
lution and beyond,” inECAL’99: Proceedings of the Fifth European
Conference on Artificial Life, Lausanne, Switzerland, Sept. 1999, pp.
149–153.

[24] N. Paterson and M. Livesey, “Evolving caching algorithms in C by GP,”
in Genetic Programming 1997: Proceedings of the 2nd Annual Confer-
ence. Cambridge, MA: MIT Press, 1997, pp. 262–267.

[25] M. Pelikan, D. E. Goldberg, and E. Cantú-Paz, “BOA: The Bayesian
optimization algorithm,” inGECCO ’99: Proceedings of the Genetic
and Evolutionary Computation Conference 1999, W. Banzhaf, J. Daida,
A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith,
Eds. San Mateo, CA: Morgan Kaufmann, 1999, vol. 1, pp. 525–532.

[26] C. Ryan, J. J. Collins, and M. O’Neill, “Grammatical Evolution:
Evolving Programs for an Arbitrary Language,” inEuroGP’98:
Proceedings of the First European Workshop on Genetic Program-
ming. Berlin, Germany: Springer-Verlag, 1998, vol. 1391, Lecture
Notes in Computer Science, pp. 83–95.

[27] C. Ryan, M. O’Neill, and J. J. Collins, “Grammatical Evolution: Solving
Trigonometric Identities,” inMendel’98: Proceedings of the 4th Interna-
tional Conference on Genetic Algorithms, Optimization Problems, Fuzzy
Logic, Neural Networks, and Rough Sets. Brno, Czech Republic: Tech.
Univ. Brno, 1998, pp. 111–119.

[28] C. Ryan and M. O’Neill, “Grammatical Evolution: A Steady State Ap-
proach,” inGenetic Programming 1998: Proceedings of the 3rd Annual
Conference, J. R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo,
D. B. Fogel, M. H. Garzon, D. E. Goldberg, H. Iba, and R. L. Riolo, Eds.
Cambridge, MA, 1998, pp. 180–185.

[29] , “Grammatical Evolution: A Steady State Approach,” inProc.
Joint Conf. Information Sciences, Research Triangle Park, NC, 1998,
pp. 419–423.

[30] M. Schütz, “Gene Duplication and Deletion,” inThe Handbook of
Evolutionary Computation, T. Bäck, D. B. Fogel, and Z. Michalewicz,
Eds. Bristol, U.K.: Inst. of Physics, 1997, sec. C3.4.3.

[31] D. Thierens, “Scalability Problems of Simple Genetic Algorithms,”
Evol. Comput., vol. 7, no. 4, pp. 331–352, 1999.

[32] V. K. Vassilev and J. F. Miller, “The Advantages of Landscape Neutrality
in Digital Circuit Evolution,” inICES 2000: Proceedings of the Third In-
ternational Conference on Evolvable Systems, J. Miller, A. Thompson, P.
Thomson, and T. C. Fogarty, Eds. Berlin, Germany, 2000, pp. 252–263.

[33] P. Whigham, “Grammatically-based Genetic Programming,” in
Proceedings of the Workshop on GP: From Theory to Real-World
Applications. San Mateo, CA: Morgan Kaufmann, 1995, pp. 33–41.

[34] , “Inductive bias and genetic programming,” inFirst International
Conference on Genetic Algorithms in Engineering Systems: Innovations
and Applications. Stevenage, U.K.: IEE, 1995, pp. 461–466.

[35] , “Search Bias, Language Bias and Genetic Programming,” in
Genetic Programming 1996: Proceedings of the 1st Annual Con-
ference, J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo,
Eds. Cambridge, MA: MIT Press, 1996, pp. 230–237.

[36] M. Wong and K. Leung, “Applying logic grammars to induce subfunc-
tions in genetic programming,” inProceedings of the IEEE Conference
on Evolutionary Computation. Piscataway, NJ: IEEE Press, 1995, pp.
737–740.

[37] T. Yu and P. Bentley, “Methods to evolve legal phenotypes,” inParallel
Problem Solving from Nature—PPSN V, A. E. Eiben, M. Schoenauer,
and T. Bäck, Eds. Berlin, Germany: Springer-Verlag, 1998, vol. 1498,
Lecture Notes in Computer Science, pp. 280–291.

358 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 5, NO. 4, AUGUST 2001

Michael O’Neill (S’98) received the B.Sc. degree in
biochemistry and the Graduate Diploma in computer
science from the University College Dublin, Dublin,
Ireland, in 1996 and 1997, respectively. He is
working toward the Ph.D. degree in grammatical
evolution at the University of Limerick, Limerick,
Ireland.

He is currently a Lecturer with the Department of
Computer Science and Information Systems, Univer-
sity of Limerick. His current research interests in-
clude automatic programming, evolutionary compu-

tation, artificial life, and robotics.

Conor Ryan received the B.A. degree in computer
science and economics and the Ph.D. degree in
computer science from the University College Cork,
Cork, Ireland.

He is currently a Lecturer at the University of
Limerick, Limerick, Ireland, where he is also the
director of the Soft Computing and Re-Engineerring
Group. His current research interests include genetic
programming, evolutionary algorithms, automatic
programming, and auto-parallelization and is
particularly interested in the use of modern heuristic

techniques in industrial scale problems.

